Metamath Proof Explorer


Theorem mdetlap1

Description: A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses mdetlap1.a A = N Mat R
mdetlap1.b B = Base A
mdetlap1.d D = N maDet R
mdetlap1.k K = N maAdju R
mdetlap1.t · ˙ = R
Assertion mdetlap1 R CRing M B I N D M = R j N I M j · ˙ j K M I

Proof

Step Hyp Ref Expression
1 mdetlap1.a A = N Mat R
2 mdetlap1.b B = Base A
3 mdetlap1.d D = N maDet R
4 mdetlap1.k K = N maAdju R
5 mdetlap1.t · ˙ = R
6 simp2 R CRing M B I N M B
7 1 2 matmpo M B M = i N , j N i M j
8 eqid N = N
9 simpr i = I i = I
10 9 eqcomd i = I I = i
11 10 oveq1d i = I I M j = i M j
12 eqidd ¬ i = I i M j = i M j
13 11 12 ifeqda if i = I I M j i M j = i M j
14 13 mptru if i = I I M j i M j = i M j
15 8 8 14 mpoeq123i i N , j N if i = I I M j i M j = i N , j N i M j
16 7 15 eqtr4di M B M = i N , j N if i = I I M j i M j
17 16 fveq2d M B D M = D i N , j N if i = I I M j i M j
18 6 17 syl R CRing M B I N D M = D i N , j N if i = I I M j i M j
19 eqid Base R = Base R
20 simp1 R CRing M B I N R CRing
21 simpl3 R CRing M B I N j N I N
22 simpr R CRing M B I N j N j N
23 6 2 eleqtrdi R CRing M B I N M Base A
24 23 adantr R CRing M B I N j N M Base A
25 1 19 matecl I N j N M Base A I M j Base R
26 21 22 24 25 syl3anc R CRing M B I N j N I M j Base R
27 simp3 R CRing M B I N I N
28 1 4 2 3 5 19 6 20 26 27 madugsum R CRing M B I N R j N I M j · ˙ j K M I = D i N , j N if i = I I M j i M j
29 18 28 eqtr4d R CRing M B I N D M = R j N I M j · ˙ j K M I