| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetlap1.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mdetlap1.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | mdetlap1.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 4 |  | mdetlap1.k | ⊢ 𝐾  =  ( 𝑁  maAdju  𝑅 ) | 
						
							| 5 |  | mdetlap1.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 7 | 1 2 | matmpo | ⊢ ( 𝑀  ∈  𝐵  →  𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 8 |  | eqid | ⊢ 𝑁  =  𝑁 | 
						
							| 9 |  | simpr | ⊢ ( ( ⊤  ∧  𝑖  =  𝐼 )  →  𝑖  =  𝐼 ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( ( ⊤  ∧  𝑖  =  𝐼 )  →  𝐼  =  𝑖 ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( ( ⊤  ∧  𝑖  =  𝐼 )  →  ( 𝐼 𝑀 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 12 |  | eqidd | ⊢ ( ( ⊤  ∧  ¬  𝑖  =  𝐼 )  →  ( 𝑖 𝑀 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 13 | 11 12 | ifeqda | ⊢ ( ⊤  →  if ( 𝑖  =  𝐼 ,  ( 𝐼 𝑀 𝑗 ) ,  ( 𝑖 𝑀 𝑗 ) )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 14 | 13 | mptru | ⊢ if ( 𝑖  =  𝐼 ,  ( 𝐼 𝑀 𝑗 ) ,  ( 𝑖 𝑀 𝑗 ) )  =  ( 𝑖 𝑀 𝑗 ) | 
						
							| 15 | 8 8 14 | mpoeq123i | ⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝐼 𝑀 𝑗 ) ,  ( 𝑖 𝑀 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 16 | 7 15 | eqtr4di | ⊢ ( 𝑀  ∈  𝐵  →  𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝐼 𝑀 𝑗 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝐷 ‘ 𝑀 )  =  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝐼 𝑀 𝑗 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) ) | 
						
							| 18 | 6 17 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  →  ( 𝐷 ‘ 𝑀 )  =  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝐼 𝑀 𝑗 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 20 |  | simp1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  →  𝑅  ∈  CRing ) | 
						
							| 21 |  | simpl3 | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  𝐼  ∈  𝑁 ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 23 | 6 2 | eleqtrdi | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 25 | 1 19 | matecl | ⊢ ( ( 𝐼  ∈  𝑁  ∧  𝑗  ∈  𝑁  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) )  →  ( 𝐼 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 | 21 22 24 25 | syl3anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 𝐼 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 27 |  | simp3 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  →  𝐼  ∈  𝑁 ) | 
						
							| 28 | 1 4 2 3 5 19 6 20 26 27 | madugsum | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) )  =  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝐼 𝑀 𝑗 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) ) | 
						
							| 29 | 18 28 | eqtr4d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  𝑁 )  →  ( 𝐷 ‘ 𝑀 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) ) |