Step |
Hyp |
Ref |
Expression |
1 |
|
mdetlap1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mdetlap1.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mdetlap1.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
4 |
|
mdetlap1.k |
⊢ 𝐾 = ( 𝑁 maAdju 𝑅 ) |
5 |
|
mdetlap1.t |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
simp2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
7 |
1 2
|
matmpo |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
8 |
|
eqid |
⊢ 𝑁 = 𝑁 |
9 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
10 |
9
|
eqcomd |
⊢ ( ( ⊤ ∧ 𝑖 = 𝐼 ) → 𝐼 = 𝑖 ) |
11 |
10
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑖 = 𝐼 ) → ( 𝐼 𝑀 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
12 |
|
eqidd |
⊢ ( ( ⊤ ∧ ¬ 𝑖 = 𝐼 ) → ( 𝑖 𝑀 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
13 |
11 12
|
ifeqda |
⊢ ( ⊤ → if ( 𝑖 = 𝐼 , ( 𝐼 𝑀 𝑗 ) , ( 𝑖 𝑀 𝑗 ) ) = ( 𝑖 𝑀 𝑗 ) ) |
14 |
13
|
mptru |
⊢ if ( 𝑖 = 𝐼 , ( 𝐼 𝑀 𝑗 ) , ( 𝑖 𝑀 𝑗 ) ) = ( 𝑖 𝑀 𝑗 ) |
15 |
8 8 14
|
mpoeq123i |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐼 𝑀 𝑗 ) , ( 𝑖 𝑀 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 𝑀 𝑗 ) ) |
16 |
7 15
|
eqtr4di |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐼 𝑀 𝑗 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝐷 ‘ 𝑀 ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐼 𝑀 𝑗 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
18 |
6 17
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐼 𝑀 𝑗 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
20 |
|
simp1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
21 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → 𝐼 ∈ 𝑁 ) |
22 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
23 |
6 2
|
eleqtrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
25 |
1 19
|
matecl |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
26 |
21 22 24 25
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
27 |
|
simp3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) → 𝐼 ∈ 𝑁 ) |
28 |
1 4 2 3 5 19 6 20 26 27
|
madugsum |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐼 𝑀 𝑗 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
29 |
18 28
|
eqtr4d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) ) |