| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b |  |-  B = ( Base ` A ) | 
						
							| 2 |  | madjusmdet.a |  |-  A = ( ( 1 ... N ) Mat R ) | 
						
							| 3 |  | madjusmdet.d |  |-  D = ( ( 1 ... N ) maDet R ) | 
						
							| 4 |  | madjusmdet.k |  |-  K = ( ( 1 ... N ) maAdju R ) | 
						
							| 5 |  | madjusmdet.t |  |-  .x. = ( .r ` R ) | 
						
							| 6 |  | madjusmdet.z |  |-  Z = ( ZRHom ` R ) | 
						
							| 7 |  | madjusmdet.e |  |-  E = ( ( 1 ... ( N - 1 ) ) maDet R ) | 
						
							| 8 |  | madjusmdet.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | madjusmdet.r |  |-  ( ph -> R e. CRing ) | 
						
							| 10 |  | madjusmdet.i |  |-  ( ph -> I e. ( 1 ... N ) ) | 
						
							| 11 |  | madjusmdet.j |  |-  ( ph -> J e. ( 1 ... N ) ) | 
						
							| 12 |  | madjusmdet.m |  |-  ( ph -> M e. B ) | 
						
							| 13 |  | madjusmdetlem1.g |  |-  G = ( Base ` ( SymGrp ` ( 1 ... N ) ) ) | 
						
							| 14 |  | madjusmdetlem1.s |  |-  S = ( pmSgn ` ( 1 ... N ) ) | 
						
							| 15 |  | madjusmdetlem1.u |  |-  U = ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) | 
						
							| 16 |  | madjusmdetlem1.w |  |-  W = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) U ( Q ` j ) ) ) | 
						
							| 17 |  | madjusmdetlem1.p |  |-  ( ph -> P e. G ) | 
						
							| 18 |  | madjusmdetlem1.q |  |-  ( ph -> Q e. G ) | 
						
							| 19 |  | madjusmdetlem1.1 |  |-  ( ph -> ( P ` N ) = I ) | 
						
							| 20 |  | madjusmdetlem1.2 |  |-  ( ph -> ( Q ` N ) = J ) | 
						
							| 21 |  | madjusmdetlem1.3 |  |-  ( ph -> ( I ( subMat1 ` U ) J ) = ( N ( subMat1 ` W ) N ) ) | 
						
							| 22 | 2 1 3 4 | maducoevalmin1 |  |-  ( ( M e. B /\ J e. ( 1 ... N ) /\ I e. ( 1 ... N ) ) -> ( J ( K ` M ) I ) = ( D ` ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ) ) | 
						
							| 23 | 12 11 10 22 | syl3anc |  |-  ( ph -> ( J ( K ` M ) I ) = ( D ` ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ) ) | 
						
							| 24 | 15 | fveq2i |  |-  ( D ` U ) = ( D ` ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ) | 
						
							| 25 | 23 24 | eqtr4di |  |-  ( ph -> ( J ( K ` M ) I ) = ( D ` U ) ) | 
						
							| 26 |  | fzfid |  |-  ( ph -> ( 1 ... N ) e. Fin ) | 
						
							| 27 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 28 | 9 27 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 29 | 2 1 | minmar1cl |  |-  ( ( ( R e. Ring /\ M e. B ) /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) ) -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) e. B ) | 
						
							| 30 | 28 12 10 11 29 | syl22anc |  |-  ( ph -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) e. B ) | 
						
							| 31 | 15 30 | eqeltrid |  |-  ( ph -> U e. B ) | 
						
							| 32 | 2 1 3 13 14 6 5 16 9 26 31 17 18 | mdetpmtr12 |  |-  ( ph -> ( D ` U ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( D ` W ) ) ) | 
						
							| 33 |  | simplr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> i = N ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( P ` i ) = ( P ` N ) ) | 
						
							| 35 | 19 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( P ` N ) = I ) | 
						
							| 36 | 35 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( P ` N ) = I ) | 
						
							| 37 | 34 36 | eqtrd |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( P ` i ) = I ) | 
						
							| 38 |  | simpr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> j = N ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( Q ` j ) = ( Q ` N ) ) | 
						
							| 40 | 20 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( Q ` N ) = J ) | 
						
							| 41 | 40 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( Q ` N ) = J ) | 
						
							| 42 | 39 41 | eqtrd |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( Q ` j ) = J ) | 
						
							| 43 | 37 42 | oveq12d |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) = ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) J ) ) | 
						
							| 44 | 12 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> M e. B ) | 
						
							| 45 | 44 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> M e. B ) | 
						
							| 46 | 10 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> I e. ( 1 ... N ) ) | 
						
							| 47 | 46 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> I e. ( 1 ... N ) ) | 
						
							| 48 | 11 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> J e. ( 1 ... N ) ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> J e. ( 1 ... N ) ) | 
						
							| 50 |  | eqid |  |-  ( ( 1 ... N ) minMatR1 R ) = ( ( 1 ... N ) minMatR1 R ) | 
						
							| 51 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 52 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 53 | 2 1 50 51 52 | minmar1eval |  |-  ( ( M e. B /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) ) -> ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) J ) = if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) ) | 
						
							| 54 | 45 47 49 47 49 53 | syl122anc |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) J ) = if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) ) | 
						
							| 55 |  | eqid |  |-  I = I | 
						
							| 56 | 55 | iftruei |  |-  if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) = if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) | 
						
							| 57 |  | eqid |  |-  J = J | 
						
							| 58 | 57 | iftruei |  |-  if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) = ( 1r ` R ) | 
						
							| 59 | 56 58 | eqtri |  |-  if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) = ( 1r ` R ) | 
						
							| 60 | 59 | a1i |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) = ( 1r ` R ) ) | 
						
							| 61 | 43 54 60 | 3eqtrrd |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( 1r ` R ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 62 |  | simplr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> i = N ) | 
						
							| 63 | 62 | fveq2d |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( P ` i ) = ( P ` N ) ) | 
						
							| 64 | 35 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( P ` N ) = I ) | 
						
							| 65 | 63 64 | eqtrd |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( P ` i ) = I ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) = ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 67 | 44 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> M e. B ) | 
						
							| 68 | 46 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> I e. ( 1 ... N ) ) | 
						
							| 69 | 48 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> J e. ( 1 ... N ) ) | 
						
							| 70 | 18 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> Q e. G ) | 
						
							| 71 |  | simp3 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) | 
						
							| 72 |  | eqid |  |-  ( SymGrp ` ( 1 ... N ) ) = ( SymGrp ` ( 1 ... N ) ) | 
						
							| 73 | 72 13 | symgfv |  |-  ( ( Q e. G /\ j e. ( 1 ... N ) ) -> ( Q ` j ) e. ( 1 ... N ) ) | 
						
							| 74 | 70 71 73 | syl2anc |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( Q ` j ) e. ( 1 ... N ) ) | 
						
							| 75 | 74 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( Q ` j ) e. ( 1 ... N ) ) | 
						
							| 76 | 2 1 50 51 52 | minmar1eval |  |-  ( ( M e. B /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) /\ ( I e. ( 1 ... N ) /\ ( Q ` j ) e. ( 1 ... N ) ) ) -> ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) = if ( I = I , if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M ( Q ` j ) ) ) ) | 
						
							| 77 | 67 68 69 68 75 76 | syl122anc |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) = if ( I = I , if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M ( Q ` j ) ) ) ) | 
						
							| 78 | 55 | a1i |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> I = I ) | 
						
							| 79 | 78 | iftrued |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> if ( I = I , if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M ( Q ` j ) ) ) = if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) ) | 
						
							| 80 |  | simpr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> ( Q ` j ) = J ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> ( `' Q ` ( Q ` j ) ) = ( `' Q ` J ) ) | 
						
							| 82 | 72 13 | symgbasf1o |  |-  ( Q e. G -> Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 83 | 70 82 | syl |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 84 | 83 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 85 | 71 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> j e. ( 1 ... N ) ) | 
						
							| 86 |  | f1ocnvfv1 |  |-  ( ( Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( `' Q ` ( Q ` j ) ) = j ) | 
						
							| 87 | 84 85 86 | syl2anc |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> ( `' Q ` ( Q ` j ) ) = j ) | 
						
							| 88 | 20 | fveq2d |  |-  ( ph -> ( `' Q ` ( Q ` N ) ) = ( `' Q ` J ) ) | 
						
							| 89 | 18 82 | syl |  |-  ( ph -> Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 90 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 91 | 8 90 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 92 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) | 
						
							| 93 | 91 92 | syl |  |-  ( ph -> N e. ( 1 ... N ) ) | 
						
							| 94 |  | f1ocnvfv1 |  |-  ( ( Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> ( `' Q ` ( Q ` N ) ) = N ) | 
						
							| 95 | 89 93 94 | syl2anc |  |-  ( ph -> ( `' Q ` ( Q ` N ) ) = N ) | 
						
							| 96 | 88 95 | eqtr3d |  |-  ( ph -> ( `' Q ` J ) = N ) | 
						
							| 97 | 96 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( `' Q ` J ) = N ) | 
						
							| 98 | 97 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> ( `' Q ` J ) = N ) | 
						
							| 99 | 81 87 98 | 3eqtr3d |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> j = N ) | 
						
							| 100 | 99 | ex |  |-  ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) -> ( ( Q ` j ) = J -> j = N ) ) | 
						
							| 101 | 100 | con3d |  |-  ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) -> ( -. j = N -> -. ( Q ` j ) = J ) ) | 
						
							| 102 | 101 | imp |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> -. ( Q ` j ) = J ) | 
						
							| 103 | 102 | iffalsed |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 104 | 79 103 | eqtrd |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> if ( I = I , if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M ( Q ` j ) ) ) = ( 0g ` R ) ) | 
						
							| 105 | 66 77 104 | 3eqtrrd |  |-  ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( 0g ` R ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 106 | 61 105 | ifeqda |  |-  ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) -> if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 107 |  | simp2 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ -. i = N ) -> i e. ( 1 ... N ) ) | 
						
							| 109 | 71 | adantr |  |-  ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ -. i = N ) -> j e. ( 1 ... N ) ) | 
						
							| 110 |  | ovexd |  |-  ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ -. i = N ) -> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) e. _V ) | 
						
							| 111 | 15 | oveqi |  |-  ( ( P ` i ) U ( Q ` j ) ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) | 
						
							| 112 | 111 | a1i |  |-  ( ( i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( P ` i ) U ( Q ` j ) ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 113 | 112 | mpoeq3ia |  |-  ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) U ( Q ` j ) ) ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 114 | 16 113 | eqtri |  |-  W = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 115 | 114 | ovmpt4g |  |-  ( ( i e. ( 1 ... N ) /\ j e. ( 1 ... N ) /\ ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) e. _V ) -> ( i W j ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 116 | 108 109 110 115 | syl3anc |  |-  ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ -. i = N ) -> ( i W j ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 117 | 106 116 | ifeqda |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> if ( i = N , if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) , ( i W j ) ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) | 
						
							| 118 | 117 | mpoeq3dva |  |-  ( ph -> ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> if ( i = N , if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) , ( i W j ) ) ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) ) | 
						
							| 119 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 120 | 17 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> P e. G ) | 
						
							| 121 | 72 13 | symgfv |  |-  ( ( P e. G /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. ( 1 ... N ) ) | 
						
							| 122 | 120 107 121 | syl2anc |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( P ` i ) e. ( 1 ... N ) ) | 
						
							| 123 | 31 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> U e. B ) | 
						
							| 124 | 2 119 1 122 74 123 | matecld |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( P ` i ) U ( Q ` j ) ) e. ( Base ` R ) ) | 
						
							| 125 | 2 119 1 26 9 124 | matbas2d |  |-  ( ph -> ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) U ( Q ` j ) ) ) e. B ) | 
						
							| 126 | 16 125 | eqeltrid |  |-  ( ph -> W e. B ) | 
						
							| 127 | 119 51 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 128 | 28 127 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 129 |  | eqid |  |-  ( ( 1 ... N ) matRRep R ) = ( ( 1 ... N ) matRRep R ) | 
						
							| 130 | 2 1 129 52 | marrepval |  |-  ( ( ( W e. B /\ ( 1r ` R ) e. ( Base ` R ) ) /\ ( N e. ( 1 ... N ) /\ N e. ( 1 ... N ) ) ) -> ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> if ( i = N , if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) , ( i W j ) ) ) ) | 
						
							| 131 | 126 128 93 93 130 | syl22anc |  |-  ( ph -> ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> if ( i = N , if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) , ( i W j ) ) ) ) | 
						
							| 132 | 114 | a1i |  |-  ( ph -> W = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) ) | 
						
							| 133 | 118 131 132 | 3eqtr4d |  |-  ( ph -> ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) = W ) | 
						
							| 134 | 133 | fveq2d |  |-  ( ph -> ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( D ` W ) ) | 
						
							| 135 |  | eqid |  |-  ( ( 1 ... N ) subMat R ) = ( ( 1 ... N ) subMat R ) | 
						
							| 136 | 2 135 1 | submaval |  |-  ( ( W e. B /\ N e. ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) = ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i W j ) ) ) | 
						
							| 137 | 126 93 93 136 | syl3anc |  |-  ( ph -> ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) = ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i W j ) ) ) | 
						
							| 138 |  | fzdif2 |  |-  ( N e. ( ZZ>= ` 1 ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 139 | 91 138 | syl |  |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 140 |  | mpoeq12 |  |-  ( ( ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) /\ ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) -> ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i W j ) ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) ) | 
						
							| 141 | 139 139 140 | syl2anc |  |-  ( ph -> ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i W j ) ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) ) | 
						
							| 142 | 137 141 | eqtrd |  |-  ( ph -> ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) ) | 
						
							| 143 |  | difssd |  |-  ( ph -> ( ( 1 ... N ) \ { N } ) C_ ( 1 ... N ) ) | 
						
							| 144 | 139 143 | eqsstrrd |  |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 145 | 2 1 | submabas |  |-  ( ( W e. B /\ ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) -> ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 146 | 126 144 145 | syl2anc |  |-  ( ph -> ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 147 | 142 146 | eqeltrd |  |-  ( ph -> ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 148 |  | eqid |  |-  ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) | 
						
							| 149 |  | eqid |  |-  ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) | 
						
							| 150 | 7 148 149 119 | mdetcl |  |-  ( ( R e. CRing /\ ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) -> ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) e. ( Base ` R ) ) | 
						
							| 151 | 9 147 150 | syl2anc |  |-  ( ph -> ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) e. ( Base ` R ) ) | 
						
							| 152 | 119 5 51 | ringlidm |  |-  ( ( R e. Ring /\ ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) .x. ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) = ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) | 
						
							| 153 | 28 151 152 | syl2anc |  |-  ( ph -> ( ( 1r ` R ) .x. ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) = ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) | 
						
							| 154 | 2 | fveq2i |  |-  ( Base ` A ) = ( Base ` ( ( 1 ... N ) Mat R ) ) | 
						
							| 155 | 1 154 | eqtri |  |-  B = ( Base ` ( ( 1 ... N ) Mat R ) ) | 
						
							| 156 | 126 155 | eleqtrdi |  |-  ( ph -> W e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) | 
						
							| 157 |  | smadiadetr |  |-  ( ( ( R e. CRing /\ W e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) /\ ( N e. ( 1 ... N ) /\ ( 1r ` R ) e. ( Base ` R ) ) ) -> ( ( ( 1 ... N ) maDet R ) ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) | 
						
							| 158 | 9 156 93 128 157 | syl22anc |  |-  ( ph -> ( ( ( 1 ... N ) maDet R ) ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) | 
						
							| 159 | 3 | fveq1i |  |-  ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( ( 1 ... N ) maDet R ) ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) | 
						
							| 160 | 5 | oveqi |  |-  ( ( 1r ` R ) .x. ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) | 
						
							| 161 | 159 160 | eqeq12i |  |-  ( ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) .x. ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) <-> ( ( ( 1 ... N ) maDet R ) ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) | 
						
							| 162 | 158 161 | sylibr |  |-  ( ph -> ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) .x. ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) | 
						
							| 163 | 139 | oveq1d |  |-  ( ph -> ( ( ( 1 ... N ) \ { N } ) maDet R ) = ( ( 1 ... ( N - 1 ) ) maDet R ) ) | 
						
							| 164 | 163 7 | eqtr4di |  |-  ( ph -> ( ( ( 1 ... N ) \ { N } ) maDet R ) = E ) | 
						
							| 165 | 164 | fveq1d |  |-  ( ph -> ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) = ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) | 
						
							| 166 | 165 | oveq2d |  |-  ( ph -> ( ( 1r ` R ) .x. ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) = ( ( 1r ` R ) .x. ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) | 
						
							| 167 | 162 166 | eqtrd |  |-  ( ph -> ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) .x. ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) | 
						
							| 168 | 2 1 | submat1n |  |-  ( ( N e. NN /\ W e. B ) -> ( N ( subMat1 ` W ) N ) = ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) | 
						
							| 169 | 8 126 168 | syl2anc |  |-  ( ph -> ( N ( subMat1 ` W ) N ) = ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) | 
						
							| 170 | 169 | fveq2d |  |-  ( ph -> ( E ` ( N ( subMat1 ` W ) N ) ) = ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) | 
						
							| 171 | 153 167 170 | 3eqtr4d |  |-  ( ph -> ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( E ` ( N ( subMat1 ` W ) N ) ) ) | 
						
							| 172 | 134 171 | eqtr3d |  |-  ( ph -> ( D ` W ) = ( E ` ( N ( subMat1 ` W ) N ) ) ) | 
						
							| 173 | 2 1 8 10 11 28 12 15 | submatminr1 |  |-  ( ph -> ( I ( subMat1 ` M ) J ) = ( I ( subMat1 ` U ) J ) ) | 
						
							| 174 | 173 21 | eqtrd |  |-  ( ph -> ( I ( subMat1 ` M ) J ) = ( N ( subMat1 ` W ) N ) ) | 
						
							| 175 | 174 | fveq2d |  |-  ( ph -> ( E ` ( I ( subMat1 ` M ) J ) ) = ( E ` ( N ( subMat1 ` W ) N ) ) ) | 
						
							| 176 | 172 175 | eqtr4d |  |-  ( ph -> ( D ` W ) = ( E ` ( I ( subMat1 ` M ) J ) ) ) | 
						
							| 177 | 176 | oveq2d |  |-  ( ph -> ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( D ` W ) ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) | 
						
							| 178 | 25 32 177 | 3eqtrd |  |-  ( ph -> ( J ( K ` M ) I ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |