Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
|- B = ( Base ` A ) |
2 |
|
madjusmdet.a |
|- A = ( ( 1 ... N ) Mat R ) |
3 |
|
madjusmdet.d |
|- D = ( ( 1 ... N ) maDet R ) |
4 |
|
madjusmdet.k |
|- K = ( ( 1 ... N ) maAdju R ) |
5 |
|
madjusmdet.t |
|- .x. = ( .r ` R ) |
6 |
|
madjusmdet.z |
|- Z = ( ZRHom ` R ) |
7 |
|
madjusmdet.e |
|- E = ( ( 1 ... ( N - 1 ) ) maDet R ) |
8 |
|
madjusmdet.n |
|- ( ph -> N e. NN ) |
9 |
|
madjusmdet.r |
|- ( ph -> R e. CRing ) |
10 |
|
madjusmdet.i |
|- ( ph -> I e. ( 1 ... N ) ) |
11 |
|
madjusmdet.j |
|- ( ph -> J e. ( 1 ... N ) ) |
12 |
|
madjusmdet.m |
|- ( ph -> M e. B ) |
13 |
|
madjusmdetlem1.g |
|- G = ( Base ` ( SymGrp ` ( 1 ... N ) ) ) |
14 |
|
madjusmdetlem1.s |
|- S = ( pmSgn ` ( 1 ... N ) ) |
15 |
|
madjusmdetlem1.u |
|- U = ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) |
16 |
|
madjusmdetlem1.w |
|- W = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) U ( Q ` j ) ) ) |
17 |
|
madjusmdetlem1.p |
|- ( ph -> P e. G ) |
18 |
|
madjusmdetlem1.q |
|- ( ph -> Q e. G ) |
19 |
|
madjusmdetlem1.1 |
|- ( ph -> ( P ` N ) = I ) |
20 |
|
madjusmdetlem1.2 |
|- ( ph -> ( Q ` N ) = J ) |
21 |
|
madjusmdetlem1.3 |
|- ( ph -> ( I ( subMat1 ` U ) J ) = ( N ( subMat1 ` W ) N ) ) |
22 |
2 1 3 4
|
maducoevalmin1 |
|- ( ( M e. B /\ J e. ( 1 ... N ) /\ I e. ( 1 ... N ) ) -> ( J ( K ` M ) I ) = ( D ` ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ) ) |
23 |
12 11 10 22
|
syl3anc |
|- ( ph -> ( J ( K ` M ) I ) = ( D ` ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ) ) |
24 |
15
|
fveq2i |
|- ( D ` U ) = ( D ` ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ) |
25 |
23 24
|
eqtr4di |
|- ( ph -> ( J ( K ` M ) I ) = ( D ` U ) ) |
26 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
27 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
28 |
9 27
|
syl |
|- ( ph -> R e. Ring ) |
29 |
2 1
|
minmar1cl |
|- ( ( ( R e. Ring /\ M e. B ) /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) ) -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) e. B ) |
30 |
28 12 10 11 29
|
syl22anc |
|- ( ph -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) e. B ) |
31 |
15 30
|
eqeltrid |
|- ( ph -> U e. B ) |
32 |
2 1 3 13 14 6 5 16 9 26 31 17 18
|
mdetpmtr12 |
|- ( ph -> ( D ` U ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( D ` W ) ) ) |
33 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> i = N ) |
34 |
33
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( P ` i ) = ( P ` N ) ) |
35 |
19
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( P ` N ) = I ) |
36 |
35
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( P ` N ) = I ) |
37 |
34 36
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( P ` i ) = I ) |
38 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> j = N ) |
39 |
38
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( Q ` j ) = ( Q ` N ) ) |
40 |
20
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( Q ` N ) = J ) |
41 |
40
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( Q ` N ) = J ) |
42 |
39 41
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( Q ` j ) = J ) |
43 |
37 42
|
oveq12d |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) = ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) J ) ) |
44 |
12
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> M e. B ) |
45 |
44
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> M e. B ) |
46 |
10
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> I e. ( 1 ... N ) ) |
47 |
46
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> I e. ( 1 ... N ) ) |
48 |
11
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> J e. ( 1 ... N ) ) |
49 |
48
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> J e. ( 1 ... N ) ) |
50 |
|
eqid |
|- ( ( 1 ... N ) minMatR1 R ) = ( ( 1 ... N ) minMatR1 R ) |
51 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
52 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
53 |
2 1 50 51 52
|
minmar1eval |
|- ( ( M e. B /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) ) -> ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) J ) = if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) ) |
54 |
45 47 49 47 49 53
|
syl122anc |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) J ) = if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) ) |
55 |
|
eqid |
|- I = I |
56 |
55
|
iftruei |
|- if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) = if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) |
57 |
|
eqid |
|- J = J |
58 |
57
|
iftruei |
|- if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) = ( 1r ` R ) |
59 |
56 58
|
eqtri |
|- if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) = ( 1r ` R ) |
60 |
59
|
a1i |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> if ( I = I , if ( J = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M J ) ) = ( 1r ` R ) ) |
61 |
43 54 60
|
3eqtrrd |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ j = N ) -> ( 1r ` R ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
62 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> i = N ) |
63 |
62
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( P ` i ) = ( P ` N ) ) |
64 |
35
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( P ` N ) = I ) |
65 |
63 64
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( P ` i ) = I ) |
66 |
65
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) = ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
67 |
44
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> M e. B ) |
68 |
46
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> I e. ( 1 ... N ) ) |
69 |
48
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> J e. ( 1 ... N ) ) |
70 |
18
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> Q e. G ) |
71 |
|
simp3 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) |
72 |
|
eqid |
|- ( SymGrp ` ( 1 ... N ) ) = ( SymGrp ` ( 1 ... N ) ) |
73 |
72 13
|
symgfv |
|- ( ( Q e. G /\ j e. ( 1 ... N ) ) -> ( Q ` j ) e. ( 1 ... N ) ) |
74 |
70 71 73
|
syl2anc |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( Q ` j ) e. ( 1 ... N ) ) |
75 |
74
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( Q ` j ) e. ( 1 ... N ) ) |
76 |
2 1 50 51 52
|
minmar1eval |
|- ( ( M e. B /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) /\ ( I e. ( 1 ... N ) /\ ( Q ` j ) e. ( 1 ... N ) ) ) -> ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) = if ( I = I , if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M ( Q ` j ) ) ) ) |
77 |
67 68 69 68 75 76
|
syl122anc |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( I ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) = if ( I = I , if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M ( Q ` j ) ) ) ) |
78 |
55
|
a1i |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> I = I ) |
79 |
78
|
iftrued |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> if ( I = I , if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M ( Q ` j ) ) ) = if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) ) |
80 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> ( Q ` j ) = J ) |
81 |
80
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> ( `' Q ` ( Q ` j ) ) = ( `' Q ` J ) ) |
82 |
72 13
|
symgbasf1o |
|- ( Q e. G -> Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
83 |
70 82
|
syl |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
84 |
83
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
85 |
71
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> j e. ( 1 ... N ) ) |
86 |
|
f1ocnvfv1 |
|- ( ( Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( `' Q ` ( Q ` j ) ) = j ) |
87 |
84 85 86
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> ( `' Q ` ( Q ` j ) ) = j ) |
88 |
20
|
fveq2d |
|- ( ph -> ( `' Q ` ( Q ` N ) ) = ( `' Q ` J ) ) |
89 |
18 82
|
syl |
|- ( ph -> Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
90 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
91 |
8 90
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
92 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) |
93 |
91 92
|
syl |
|- ( ph -> N e. ( 1 ... N ) ) |
94 |
|
f1ocnvfv1 |
|- ( ( Q : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> ( `' Q ` ( Q ` N ) ) = N ) |
95 |
89 93 94
|
syl2anc |
|- ( ph -> ( `' Q ` ( Q ` N ) ) = N ) |
96 |
88 95
|
eqtr3d |
|- ( ph -> ( `' Q ` J ) = N ) |
97 |
96
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( `' Q ` J ) = N ) |
98 |
97
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> ( `' Q ` J ) = N ) |
99 |
81 87 98
|
3eqtr3d |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ ( Q ` j ) = J ) -> j = N ) |
100 |
99
|
ex |
|- ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) -> ( ( Q ` j ) = J -> j = N ) ) |
101 |
100
|
con3d |
|- ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) -> ( -. j = N -> -. ( Q ` j ) = J ) ) |
102 |
101
|
imp |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> -. ( Q ` j ) = J ) |
103 |
102
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
104 |
79 103
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> if ( I = I , if ( ( Q ` j ) = J , ( 1r ` R ) , ( 0g ` R ) ) , ( I M ( Q ` j ) ) ) = ( 0g ` R ) ) |
105 |
66 77 104
|
3eqtrrd |
|- ( ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) /\ -. j = N ) -> ( 0g ` R ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
106 |
61 105
|
ifeqda |
|- ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ i = N ) -> if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
107 |
|
simp2 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) |
108 |
107
|
adantr |
|- ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ -. i = N ) -> i e. ( 1 ... N ) ) |
109 |
71
|
adantr |
|- ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ -. i = N ) -> j e. ( 1 ... N ) ) |
110 |
|
ovexd |
|- ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ -. i = N ) -> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) e. _V ) |
111 |
15
|
oveqi |
|- ( ( P ` i ) U ( Q ` j ) ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) |
112 |
111
|
a1i |
|- ( ( i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( P ` i ) U ( Q ` j ) ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
113 |
112
|
mpoeq3ia |
|- ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) U ( Q ` j ) ) ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
114 |
16 113
|
eqtri |
|- W = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
115 |
114
|
ovmpt4g |
|- ( ( i e. ( 1 ... N ) /\ j e. ( 1 ... N ) /\ ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) e. _V ) -> ( i W j ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
116 |
108 109 110 115
|
syl3anc |
|- ( ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) /\ -. i = N ) -> ( i W j ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
117 |
106 116
|
ifeqda |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> if ( i = N , if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) , ( i W j ) ) = ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) |
118 |
117
|
mpoeq3dva |
|- ( ph -> ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> if ( i = N , if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) , ( i W j ) ) ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) ) |
119 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
120 |
17
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> P e. G ) |
121 |
72 13
|
symgfv |
|- ( ( P e. G /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. ( 1 ... N ) ) |
122 |
120 107 121
|
syl2anc |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( P ` i ) e. ( 1 ... N ) ) |
123 |
31
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> U e. B ) |
124 |
2 119 1 122 74 123
|
matecld |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( P ` i ) U ( Q ` j ) ) e. ( Base ` R ) ) |
125 |
2 119 1 26 9 124
|
matbas2d |
|- ( ph -> ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) U ( Q ` j ) ) ) e. B ) |
126 |
16 125
|
eqeltrid |
|- ( ph -> W e. B ) |
127 |
119 51
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
128 |
28 127
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
129 |
|
eqid |
|- ( ( 1 ... N ) matRRep R ) = ( ( 1 ... N ) matRRep R ) |
130 |
2 1 129 52
|
marrepval |
|- ( ( ( W e. B /\ ( 1r ` R ) e. ( Base ` R ) ) /\ ( N e. ( 1 ... N ) /\ N e. ( 1 ... N ) ) ) -> ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> if ( i = N , if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) , ( i W j ) ) ) ) |
131 |
126 128 93 93 130
|
syl22anc |
|- ( ph -> ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> if ( i = N , if ( j = N , ( 1r ` R ) , ( 0g ` R ) ) , ( i W j ) ) ) ) |
132 |
114
|
a1i |
|- ( ph -> W = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( P ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( Q ` j ) ) ) ) |
133 |
118 131 132
|
3eqtr4d |
|- ( ph -> ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) = W ) |
134 |
133
|
fveq2d |
|- ( ph -> ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( D ` W ) ) |
135 |
|
eqid |
|- ( ( 1 ... N ) subMat R ) = ( ( 1 ... N ) subMat R ) |
136 |
2 135 1
|
submaval |
|- ( ( W e. B /\ N e. ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) = ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i W j ) ) ) |
137 |
126 93 93 136
|
syl3anc |
|- ( ph -> ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) = ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i W j ) ) ) |
138 |
|
fzdif2 |
|- ( N e. ( ZZ>= ` 1 ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
139 |
91 138
|
syl |
|- ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
140 |
|
mpoeq12 |
|- ( ( ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) /\ ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) -> ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i W j ) ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) ) |
141 |
139 139 140
|
syl2anc |
|- ( ph -> ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i W j ) ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) ) |
142 |
137 141
|
eqtrd |
|- ( ph -> ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) ) |
143 |
|
difssd |
|- ( ph -> ( ( 1 ... N ) \ { N } ) C_ ( 1 ... N ) ) |
144 |
139 143
|
eqsstrrd |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
145 |
2 1
|
submabas |
|- ( ( W e. B /\ ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) -> ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
146 |
126 144 145
|
syl2anc |
|- ( ph -> ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i W j ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
147 |
142 146
|
eqeltrd |
|- ( ph -> ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
148 |
|
eqid |
|- ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) |
149 |
|
eqid |
|- ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) |
150 |
7 148 149 119
|
mdetcl |
|- ( ( R e. CRing /\ ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) -> ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) e. ( Base ` R ) ) |
151 |
9 147 150
|
syl2anc |
|- ( ph -> ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) e. ( Base ` R ) ) |
152 |
119 5 51
|
ringlidm |
|- ( ( R e. Ring /\ ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) .x. ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) = ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) |
153 |
28 151 152
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .x. ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) = ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) |
154 |
2
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( ( 1 ... N ) Mat R ) ) |
155 |
1 154
|
eqtri |
|- B = ( Base ` ( ( 1 ... N ) Mat R ) ) |
156 |
126 155
|
eleqtrdi |
|- ( ph -> W e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
157 |
|
smadiadetr |
|- ( ( ( R e. CRing /\ W e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) /\ ( N e. ( 1 ... N ) /\ ( 1r ` R ) e. ( Base ` R ) ) ) -> ( ( ( 1 ... N ) maDet R ) ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) |
158 |
9 156 93 128 157
|
syl22anc |
|- ( ph -> ( ( ( 1 ... N ) maDet R ) ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) |
159 |
3
|
fveq1i |
|- ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( ( 1 ... N ) maDet R ) ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) |
160 |
5
|
oveqi |
|- ( ( 1r ` R ) .x. ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) |
161 |
159 160
|
eqeq12i |
|- ( ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) .x. ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) <-> ( ( ( 1 ... N ) maDet R ) ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) |
162 |
158 161
|
sylibr |
|- ( ph -> ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) .x. ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) |
163 |
139
|
oveq1d |
|- ( ph -> ( ( ( 1 ... N ) \ { N } ) maDet R ) = ( ( 1 ... ( N - 1 ) ) maDet R ) ) |
164 |
163 7
|
eqtr4di |
|- ( ph -> ( ( ( 1 ... N ) \ { N } ) maDet R ) = E ) |
165 |
164
|
fveq1d |
|- ( ph -> ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) = ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) |
166 |
165
|
oveq2d |
|- ( ph -> ( ( 1r ` R ) .x. ( ( ( ( 1 ... N ) \ { N } ) maDet R ) ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) = ( ( 1r ` R ) .x. ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) |
167 |
162 166
|
eqtrd |
|- ( ph -> ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( ( 1r ` R ) .x. ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) ) |
168 |
2 1
|
submat1n |
|- ( ( N e. NN /\ W e. B ) -> ( N ( subMat1 ` W ) N ) = ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) |
169 |
8 126 168
|
syl2anc |
|- ( ph -> ( N ( subMat1 ` W ) N ) = ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) |
170 |
169
|
fveq2d |
|- ( ph -> ( E ` ( N ( subMat1 ` W ) N ) ) = ( E ` ( N ( ( ( 1 ... N ) subMat R ) ` W ) N ) ) ) |
171 |
153 167 170
|
3eqtr4d |
|- ( ph -> ( D ` ( N ( W ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) N ) ) = ( E ` ( N ( subMat1 ` W ) N ) ) ) |
172 |
134 171
|
eqtr3d |
|- ( ph -> ( D ` W ) = ( E ` ( N ( subMat1 ` W ) N ) ) ) |
173 |
2 1 8 10 11 28 12 15
|
submatminr1 |
|- ( ph -> ( I ( subMat1 ` M ) J ) = ( I ( subMat1 ` U ) J ) ) |
174 |
173 21
|
eqtrd |
|- ( ph -> ( I ( subMat1 ` M ) J ) = ( N ( subMat1 ` W ) N ) ) |
175 |
174
|
fveq2d |
|- ( ph -> ( E ` ( I ( subMat1 ` M ) J ) ) = ( E ` ( N ( subMat1 ` W ) N ) ) ) |
176 |
172 175
|
eqtr4d |
|- ( ph -> ( D ` W ) = ( E ` ( I ( subMat1 ` M ) J ) ) ) |
177 |
176
|
oveq2d |
|- ( ph -> ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( D ` W ) ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |
178 |
25 32 177
|
3eqtrd |
|- ( ph -> ( J ( K ` M ) I ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |