Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
|- B = ( Base ` A ) |
2 |
|
madjusmdet.a |
|- A = ( ( 1 ... N ) Mat R ) |
3 |
|
madjusmdet.d |
|- D = ( ( 1 ... N ) maDet R ) |
4 |
|
madjusmdet.k |
|- K = ( ( 1 ... N ) maAdju R ) |
5 |
|
madjusmdet.t |
|- .x. = ( .r ` R ) |
6 |
|
madjusmdet.z |
|- Z = ( ZRHom ` R ) |
7 |
|
madjusmdet.e |
|- E = ( ( 1 ... ( N - 1 ) ) maDet R ) |
8 |
|
madjusmdet.n |
|- ( ph -> N e. NN ) |
9 |
|
madjusmdet.r |
|- ( ph -> R e. CRing ) |
10 |
|
madjusmdet.i |
|- ( ph -> I e. ( 1 ... N ) ) |
11 |
|
madjusmdet.j |
|- ( ph -> J e. ( 1 ... N ) ) |
12 |
|
madjusmdet.m |
|- ( ph -> M e. B ) |
13 |
|
madjusmdetlem2.p |
|- P = ( i e. ( 1 ... N ) |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) |
14 |
|
madjusmdetlem2.s |
|- S = ( i e. ( 1 ... N ) |-> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) |
15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
16 |
8 15
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
17 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) |
18 |
16 17
|
syl |
|- ( ph -> N e. ( 1 ... N ) ) |
19 |
|
eqid |
|- ( 1 ... N ) = ( 1 ... N ) |
20 |
|
eqid |
|- ( SymGrp ` ( 1 ... N ) ) = ( SymGrp ` ( 1 ... N ) ) |
21 |
|
eqid |
|- ( Base ` ( SymGrp ` ( 1 ... N ) ) ) = ( Base ` ( SymGrp ` ( 1 ... N ) ) ) |
22 |
19 14 20 21
|
fzto1st |
|- ( N e. ( 1 ... N ) -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
23 |
18 22
|
syl |
|- ( ph -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
24 |
20 21
|
symgbasf1o |
|- ( S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
25 |
23 24
|
syl |
|- ( ph -> S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
27 |
|
fznatpl1 |
|- ( ( N e. NN /\ X e. ( 1 ... ( N - 1 ) ) ) -> ( X + 1 ) e. ( 1 ... N ) ) |
28 |
8 27
|
sylan |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> ( X + 1 ) e. ( 1 ... N ) ) |
29 |
|
eqeq1 |
|- ( i = x -> ( i = 1 <-> x = 1 ) ) |
30 |
|
breq1 |
|- ( i = x -> ( i <_ N <-> x <_ N ) ) |
31 |
|
oveq1 |
|- ( i = x -> ( i - 1 ) = ( x - 1 ) ) |
32 |
|
id |
|- ( i = x -> i = x ) |
33 |
30 31 32
|
ifbieq12d |
|- ( i = x -> if ( i <_ N , ( i - 1 ) , i ) = if ( x <_ N , ( x - 1 ) , x ) ) |
34 |
29 33
|
ifbieq2d |
|- ( i = x -> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) = if ( x = 1 , N , if ( x <_ N , ( x - 1 ) , x ) ) ) |
35 |
34
|
cbvmptv |
|- ( i e. ( 1 ... N ) |-> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) = ( x e. ( 1 ... N ) |-> if ( x = 1 , N , if ( x <_ N , ( x - 1 ) , x ) ) ) |
36 |
14 35
|
eqtri |
|- S = ( x e. ( 1 ... N ) |-> if ( x = 1 , N , if ( x <_ N , ( x - 1 ) , x ) ) ) |
37 |
|
simpr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> x = ( X + 1 ) ) |
38 |
|
1red |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> 1 e. RR ) |
39 |
|
fz1ssnn |
|- ( 1 ... ( N - 1 ) ) C_ NN |
40 |
|
simpr |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> X e. ( 1 ... ( N - 1 ) ) ) |
41 |
39 40
|
sselid |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> X e. NN ) |
42 |
41
|
nnrpd |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> X e. RR+ ) |
43 |
42
|
adantr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> X e. RR+ ) |
44 |
38 43
|
ltaddrp2d |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> 1 < ( X + 1 ) ) |
45 |
38 44
|
gtned |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> ( X + 1 ) =/= 1 ) |
46 |
37 45
|
eqnetrd |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> x =/= 1 ) |
47 |
46
|
neneqd |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> -. x = 1 ) |
48 |
47
|
iffalsed |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> if ( x = 1 , N , if ( x <_ N , ( x - 1 ) , x ) ) = if ( x <_ N , ( x - 1 ) , x ) ) |
49 |
8
|
adantr |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> N e. NN ) |
50 |
41
|
nnnn0d |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> X e. NN0 ) |
51 |
49
|
nnnn0d |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> N e. NN0 ) |
52 |
|
elfzle2 |
|- ( X e. ( 1 ... ( N - 1 ) ) -> X <_ ( N - 1 ) ) |
53 |
40 52
|
syl |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> X <_ ( N - 1 ) ) |
54 |
|
nn0ltlem1 |
|- ( ( X e. NN0 /\ N e. NN0 ) -> ( X < N <-> X <_ ( N - 1 ) ) ) |
55 |
54
|
biimpar |
|- ( ( ( X e. NN0 /\ N e. NN0 ) /\ X <_ ( N - 1 ) ) -> X < N ) |
56 |
50 51 53 55
|
syl21anc |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> X < N ) |
57 |
|
nnltp1le |
|- ( ( X e. NN /\ N e. NN ) -> ( X < N <-> ( X + 1 ) <_ N ) ) |
58 |
57
|
biimpa |
|- ( ( ( X e. NN /\ N e. NN ) /\ X < N ) -> ( X + 1 ) <_ N ) |
59 |
41 49 56 58
|
syl21anc |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> ( X + 1 ) <_ N ) |
60 |
59
|
adantr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> ( X + 1 ) <_ N ) |
61 |
37 60
|
eqbrtrd |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> x <_ N ) |
62 |
61
|
iftrued |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> if ( x <_ N , ( x - 1 ) , x ) = ( x - 1 ) ) |
63 |
37
|
oveq1d |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> ( x - 1 ) = ( ( X + 1 ) - 1 ) ) |
64 |
41
|
nncnd |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> X e. CC ) |
65 |
|
1cnd |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> 1 e. CC ) |
66 |
64 65
|
pncand |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> ( ( X + 1 ) - 1 ) = X ) |
67 |
66
|
adantr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> ( ( X + 1 ) - 1 ) = X ) |
68 |
63 67
|
eqtrd |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> ( x - 1 ) = X ) |
69 |
48 62 68
|
3eqtrd |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> if ( x = 1 , N , if ( x <_ N , ( x - 1 ) , x ) ) = X ) |
70 |
36 69 28 40
|
fvmptd2 |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> ( S ` ( X + 1 ) ) = X ) |
71 |
|
f1ocnvfv |
|- ( ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( X + 1 ) e. ( 1 ... N ) ) -> ( ( S ` ( X + 1 ) ) = X -> ( `' S ` X ) = ( X + 1 ) ) ) |
72 |
71
|
imp |
|- ( ( ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( X + 1 ) e. ( 1 ... N ) ) /\ ( S ` ( X + 1 ) ) = X ) -> ( `' S ` X ) = ( X + 1 ) ) |
73 |
26 28 70 72
|
syl21anc |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> ( `' S ` X ) = ( X + 1 ) ) |
74 |
73
|
fveq2d |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> ( P ` ( `' S ` X ) ) = ( P ` ( X + 1 ) ) ) |
75 |
74
|
adantr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) -> ( P ` ( `' S ` X ) ) = ( P ` ( X + 1 ) ) ) |
76 |
|
breq1 |
|- ( i = x -> ( i <_ I <-> x <_ I ) ) |
77 |
76 31 32
|
ifbieq12d |
|- ( i = x -> if ( i <_ I , ( i - 1 ) , i ) = if ( x <_ I , ( x - 1 ) , x ) ) |
78 |
29 77
|
ifbieq2d |
|- ( i = x -> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) = if ( x = 1 , I , if ( x <_ I , ( x - 1 ) , x ) ) ) |
79 |
78
|
cbvmptv |
|- ( i e. ( 1 ... N ) |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) = ( x e. ( 1 ... N ) |-> if ( x = 1 , I , if ( x <_ I , ( x - 1 ) , x ) ) ) |
80 |
13 79
|
eqtri |
|- P = ( x e. ( 1 ... N ) |-> if ( x = 1 , I , if ( x <_ I , ( x - 1 ) , x ) ) ) |
81 |
44 37
|
breqtrrd |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> 1 < x ) |
82 |
38 81
|
gtned |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> x =/= 1 ) |
83 |
82
|
neneqd |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> -. x = 1 ) |
84 |
83
|
iffalsed |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) -> if ( x = 1 , I , if ( x <_ I , ( x - 1 ) , x ) ) = if ( x <_ I , ( x - 1 ) , x ) ) |
85 |
84
|
adantlr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> if ( x = 1 , I , if ( x <_ I , ( x - 1 ) , x ) ) = if ( x <_ I , ( x - 1 ) , x ) ) |
86 |
|
simpr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> x = ( X + 1 ) ) |
87 |
41
|
ad2antrr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> X e. NN ) |
88 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
89 |
88 10
|
sselid |
|- ( ph -> I e. NN ) |
90 |
89
|
ad3antrrr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> I e. NN ) |
91 |
|
simplr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> X < I ) |
92 |
|
nnltp1le |
|- ( ( X e. NN /\ I e. NN ) -> ( X < I <-> ( X + 1 ) <_ I ) ) |
93 |
92
|
biimpa |
|- ( ( ( X e. NN /\ I e. NN ) /\ X < I ) -> ( X + 1 ) <_ I ) |
94 |
87 90 91 93
|
syl21anc |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> ( X + 1 ) <_ I ) |
95 |
86 94
|
eqbrtrd |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> x <_ I ) |
96 |
95
|
iftrued |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> if ( x <_ I , ( x - 1 ) , x ) = ( x - 1 ) ) |
97 |
68
|
adantlr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> ( x - 1 ) = X ) |
98 |
85 96 97
|
3eqtrd |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) /\ x = ( X + 1 ) ) -> if ( x = 1 , I , if ( x <_ I , ( x - 1 ) , x ) ) = X ) |
99 |
28
|
adantr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) -> ( X + 1 ) e. ( 1 ... N ) ) |
100 |
|
simplr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) -> X e. ( 1 ... ( N - 1 ) ) ) |
101 |
80 98 99 100
|
fvmptd2 |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) -> ( P ` ( X + 1 ) ) = X ) |
102 |
75 101
|
eqtr2d |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ X < I ) -> X = ( P ` ( `' S ` X ) ) ) |
103 |
74
|
adantr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) -> ( P ` ( `' S ` X ) ) = ( P ` ( X + 1 ) ) ) |
104 |
84
|
adantlr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) /\ x = ( X + 1 ) ) -> if ( x = 1 , I , if ( x <_ I , ( x - 1 ) , x ) ) = if ( x <_ I , ( x - 1 ) , x ) ) |
105 |
41
|
ad2antrr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) /\ x <_ I ) -> X e. NN ) |
106 |
89
|
ad3antrrr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) /\ x <_ I ) -> I e. NN ) |
107 |
|
simplr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) /\ x <_ I ) -> x = ( X + 1 ) ) |
108 |
|
simpr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) /\ x <_ I ) -> x <_ I ) |
109 |
107 108
|
eqbrtrrd |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) /\ x <_ I ) -> ( X + 1 ) <_ I ) |
110 |
92
|
biimpar |
|- ( ( ( X e. NN /\ I e. NN ) /\ ( X + 1 ) <_ I ) -> X < I ) |
111 |
105 106 109 110
|
syl21anc |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) /\ x <_ I ) -> X < I ) |
112 |
111
|
stoic1a |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ x = ( X + 1 ) ) /\ -. X < I ) -> -. x <_ I ) |
113 |
112
|
an32s |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) /\ x = ( X + 1 ) ) -> -. x <_ I ) |
114 |
113
|
iffalsed |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) /\ x = ( X + 1 ) ) -> if ( x <_ I , ( x - 1 ) , x ) = x ) |
115 |
|
simpr |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) /\ x = ( X + 1 ) ) -> x = ( X + 1 ) ) |
116 |
104 114 115
|
3eqtrd |
|- ( ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) /\ x = ( X + 1 ) ) -> if ( x = 1 , I , if ( x <_ I , ( x - 1 ) , x ) ) = ( X + 1 ) ) |
117 |
28
|
adantr |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) -> ( X + 1 ) e. ( 1 ... N ) ) |
118 |
80 116 117 117
|
fvmptd2 |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) -> ( P ` ( X + 1 ) ) = ( X + 1 ) ) |
119 |
103 118
|
eqtr2d |
|- ( ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) /\ -. X < I ) -> ( X + 1 ) = ( P ` ( `' S ` X ) ) ) |
120 |
102 119
|
ifeqda |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> if ( X < I , X , ( X + 1 ) ) = ( P ` ( `' S ` X ) ) ) |
121 |
|
f1ocnv |
|- ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
122 |
23 24 121
|
3syl |
|- ( ph -> `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
123 |
|
f1ofun |
|- ( `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' S ) |
124 |
122 123
|
syl |
|- ( ph -> Fun `' S ) |
125 |
|
fzdif2 |
|- ( N e. ( ZZ>= ` 1 ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
126 |
16 125
|
syl |
|- ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
127 |
|
difss |
|- ( ( 1 ... N ) \ { N } ) C_ ( 1 ... N ) |
128 |
126 127
|
eqsstrrdi |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
129 |
|
f1odm |
|- ( `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> dom `' S = ( 1 ... N ) ) |
130 |
122 129
|
syl |
|- ( ph -> dom `' S = ( 1 ... N ) ) |
131 |
128 130
|
sseqtrrd |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ dom `' S ) |
132 |
131
|
sselda |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> X e. dom `' S ) |
133 |
|
fvco |
|- ( ( Fun `' S /\ X e. dom `' S ) -> ( ( P o. `' S ) ` X ) = ( P ` ( `' S ` X ) ) ) |
134 |
124 132 133
|
syl2an2r |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> ( ( P o. `' S ) ` X ) = ( P ` ( `' S ` X ) ) ) |
135 |
120 134
|
eqtr4d |
|- ( ( ph /\ X e. ( 1 ... ( N - 1 ) ) ) -> if ( X < I , X , ( X + 1 ) ) = ( ( P o. `' S ) ` X ) ) |