| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madjusmdet.b |
|- B = ( Base ` A ) |
| 2 |
|
madjusmdet.a |
|- A = ( ( 1 ... N ) Mat R ) |
| 3 |
|
madjusmdet.d |
|- D = ( ( 1 ... N ) maDet R ) |
| 4 |
|
madjusmdet.k |
|- K = ( ( 1 ... N ) maAdju R ) |
| 5 |
|
madjusmdet.t |
|- .x. = ( .r ` R ) |
| 6 |
|
madjusmdet.z |
|- Z = ( ZRHom ` R ) |
| 7 |
|
madjusmdet.e |
|- E = ( ( 1 ... ( N - 1 ) ) maDet R ) |
| 8 |
|
madjusmdet.n |
|- ( ph -> N e. NN ) |
| 9 |
|
madjusmdet.r |
|- ( ph -> R e. CRing ) |
| 10 |
|
madjusmdet.i |
|- ( ph -> I e. ( 1 ... N ) ) |
| 11 |
|
madjusmdet.j |
|- ( ph -> J e. ( 1 ... N ) ) |
| 12 |
|
madjusmdet.m |
|- ( ph -> M e. B ) |
| 13 |
|
madjusmdetlem2.p |
|- P = ( i e. ( 1 ... N ) |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) |
| 14 |
|
madjusmdetlem2.s |
|- S = ( i e. ( 1 ... N ) |-> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) |
| 15 |
|
madjusmdetlem4.q |
|- Q = ( j e. ( 1 ... N ) |-> if ( j = 1 , J , if ( j <_ J , ( j - 1 ) , j ) ) ) |
| 16 |
|
madjusmdetlem4.t |
|- T = ( j e. ( 1 ... N ) |-> if ( j = 1 , N , if ( j <_ N , ( j - 1 ) , j ) ) ) |
| 17 |
|
madjusmdetlem3.w |
|- W = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) |
| 18 |
|
madjusmdetlem3.u |
|- ( ph -> U e. B ) |
| 19 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 20 |
8 19
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 21 |
|
fzdif2 |
|- ( N e. ( ZZ>= ` 1 ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
| 23 |
|
difss |
|- ( ( 1 ... N ) \ { N } ) C_ ( 1 ... N ) |
| 24 |
22 23
|
eqsstrrdi |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
| 26 |
|
simprl |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... ( N - 1 ) ) ) |
| 27 |
25 26
|
sseldd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... N ) ) |
| 28 |
|
simprr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... ( N - 1 ) ) ) |
| 29 |
25 28
|
sseldd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... N ) ) |
| 30 |
|
ovexd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) e. _V ) |
| 31 |
17
|
ovmpt4g |
|- ( ( i e. ( 1 ... N ) /\ j e. ( 1 ... N ) /\ ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) e. _V ) -> ( i W j ) = ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) |
| 32 |
27 29 30 31
|
syl3anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i W j ) = ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) |
| 33 |
26 28
|
ovresd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) = ( i W j ) ) |
| 34 |
|
eqid |
|- ( I ( subMat1 ` U ) J ) = ( I ( subMat1 ` U ) J ) |
| 35 |
8
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> N e. NN ) |
| 36 |
10
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> I e. ( 1 ... N ) ) |
| 37 |
11
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> J e. ( 1 ... N ) ) |
| 38 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 39 |
2 38 1
|
matbas2i |
|- ( U e. B -> U e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
| 40 |
18 39
|
syl |
|- ( ph -> U e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> U e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
| 42 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 43 |
42 27
|
sselid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. NN ) |
| 44 |
42 29
|
sselid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. NN ) |
| 45 |
|
eqidd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) = if ( i < I , i , ( i + 1 ) ) ) |
| 46 |
|
eqidd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < J , j , ( j + 1 ) ) = if ( j < J , j , ( j + 1 ) ) ) |
| 47 |
34 35 35 36 37 41 43 44 45 46
|
smatlem |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` U ) J ) j ) = ( if ( i < I , i , ( i + 1 ) ) U if ( j < J , j , ( j + 1 ) ) ) ) |
| 48 |
1 2 3 4 5 6 7 8 9 10 10 12 13 14
|
madjusmdetlem2 |
|- ( ( ph /\ i e. ( 1 ... ( N - 1 ) ) ) -> if ( i < I , i , ( i + 1 ) ) = ( ( P o. `' S ) ` i ) ) |
| 49 |
26 48
|
syldan |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) = ( ( P o. `' S ) ` i ) ) |
| 50 |
1 2 3 4 5 6 7 8 9 11 11 12 15 16
|
madjusmdetlem2 |
|- ( ( ph /\ j e. ( 1 ... ( N - 1 ) ) ) -> if ( j < J , j , ( j + 1 ) ) = ( ( Q o. `' T ) ` j ) ) |
| 51 |
28 50
|
syldan |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < J , j , ( j + 1 ) ) = ( ( Q o. `' T ) ` j ) ) |
| 52 |
49 51
|
oveq12d |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( i < I , i , ( i + 1 ) ) U if ( j < J , j , ( j + 1 ) ) ) = ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) |
| 53 |
47 52
|
eqtrd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` U ) J ) j ) = ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) |
| 54 |
32 33 53
|
3eqtr4rd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` U ) J ) j ) = ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) ) |
| 55 |
54
|
ralrimivva |
|- ( ph -> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` U ) J ) j ) = ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) ) |
| 56 |
|
eqid |
|- ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) |
| 57 |
2 1 56 34 8 10 11 18
|
smatcl |
|- ( ph -> ( I ( subMat1 ` U ) J ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
| 58 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 59 |
|
eqid |
|- ( 1 ... N ) = ( 1 ... N ) |
| 60 |
|
eqid |
|- ( SymGrp ` ( 1 ... N ) ) = ( SymGrp ` ( 1 ... N ) ) |
| 61 |
|
eqid |
|- ( Base ` ( SymGrp ` ( 1 ... N ) ) ) = ( Base ` ( SymGrp ` ( 1 ... N ) ) ) |
| 62 |
59 13 60 61
|
fzto1st |
|- ( I e. ( 1 ... N ) -> P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 63 |
10 62
|
syl |
|- ( ph -> P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 64 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) |
| 65 |
20 64
|
syl |
|- ( ph -> N e. ( 1 ... N ) ) |
| 66 |
59 14 60 61
|
fzto1st |
|- ( N e. ( 1 ... N ) -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 67 |
65 66
|
syl |
|- ( ph -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 68 |
|
eqid |
|- ( invg ` ( SymGrp ` ( 1 ... N ) ) ) = ( invg ` ( SymGrp ` ( 1 ... N ) ) ) |
| 69 |
60 61 68
|
symginv |
|- ( S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) = `' S ) |
| 70 |
67 69
|
syl |
|- ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) = `' S ) |
| 71 |
60
|
symggrp |
|- ( ( 1 ... N ) e. Fin -> ( SymGrp ` ( 1 ... N ) ) e. Grp ) |
| 72 |
58 71
|
syl |
|- ( ph -> ( SymGrp ` ( 1 ... N ) ) e. Grp ) |
| 73 |
61 68
|
grpinvcl |
|- ( ( ( SymGrp ` ( 1 ... N ) ) e. Grp /\ S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 74 |
72 67 73
|
syl2anc |
|- ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 75 |
70 74
|
eqeltrrd |
|- ( ph -> `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 76 |
|
eqid |
|- ( +g ` ( SymGrp ` ( 1 ... N ) ) ) = ( +g ` ( SymGrp ` ( 1 ... N ) ) ) |
| 77 |
60 61 76
|
symgov |
|- ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' S ) = ( P o. `' S ) ) |
| 78 |
60 61 76
|
symgcl |
|- ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 79 |
77 78
|
eqeltrrd |
|- ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 80 |
63 75 79
|
syl2anc |
|- ( ph -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 81 |
80
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 82 |
|
simp2 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) |
| 83 |
60 61
|
symgfv |
|- ( ( ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( P o. `' S ) ` i ) e. ( 1 ... N ) ) |
| 84 |
81 82 83
|
syl2anc |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( P o. `' S ) ` i ) e. ( 1 ... N ) ) |
| 85 |
59 15 60 61
|
fzto1st |
|- ( J e. ( 1 ... N ) -> Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 86 |
11 85
|
syl |
|- ( ph -> Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 87 |
59 16 60 61
|
fzto1st |
|- ( N e. ( 1 ... N ) -> T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 88 |
65 87
|
syl |
|- ( ph -> T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 89 |
60 61 68
|
symginv |
|- ( T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) = `' T ) |
| 90 |
88 89
|
syl |
|- ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) = `' T ) |
| 91 |
61 68
|
grpinvcl |
|- ( ( ( SymGrp ` ( 1 ... N ) ) e. Grp /\ T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 92 |
72 88 91
|
syl2anc |
|- ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 93 |
90 92
|
eqeltrrd |
|- ( ph -> `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 94 |
60 61 76
|
symgov |
|- ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' T ) = ( Q o. `' T ) ) |
| 95 |
60 61 76
|
symgcl |
|- ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 96 |
94 95
|
eqeltrrd |
|- ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 97 |
86 93 96
|
syl2anc |
|- ( ph -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 98 |
97
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 99 |
|
simp3 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) |
| 100 |
60 61
|
symgfv |
|- ( ( ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( Q o. `' T ) ` j ) e. ( 1 ... N ) ) |
| 101 |
98 99 100
|
syl2anc |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( Q o. `' T ) ` j ) e. ( 1 ... N ) ) |
| 102 |
18
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> U e. B ) |
| 103 |
2 38 1 84 101 102
|
matecld |
|- ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) e. ( Base ` R ) ) |
| 104 |
2 38 1 58 9 103
|
matbas2d |
|- ( ph -> ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) e. B ) |
| 105 |
17 104
|
eqeltrid |
|- ( ph -> W e. B ) |
| 106 |
2 1
|
submatres |
|- ( ( N e. NN /\ W e. B ) -> ( N ( subMat1 ` W ) N ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
| 107 |
8 105 106
|
syl2anc |
|- ( ph -> ( N ( subMat1 ` W ) N ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
| 108 |
|
eqid |
|- ( N ( subMat1 ` W ) N ) = ( N ( subMat1 ` W ) N ) |
| 109 |
2 1 56 108 8 65 65 105
|
smatcl |
|- ( ph -> ( N ( subMat1 ` W ) N ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
| 110 |
107 109
|
eqeltrrd |
|- ( ph -> ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
| 111 |
|
eqid |
|- ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) |
| 112 |
111 56
|
eqmat |
|- ( ( ( I ( subMat1 ` U ) J ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) /\ ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) -> ( ( I ( subMat1 ` U ) J ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` U ) J ) j ) = ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) ) ) |
| 113 |
57 110 112
|
syl2anc |
|- ( ph -> ( ( I ( subMat1 ` U ) J ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` U ) J ) j ) = ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) ) ) |
| 114 |
55 113
|
mpbird |
|- ( ph -> ( I ( subMat1 ` U ) J ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
| 115 |
114 107
|
eqtr4d |
|- ( ph -> ( I ( subMat1 ` U ) J ) = ( N ( subMat1 ` W ) N ) ) |