| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b |  |-  B = ( Base ` A ) | 
						
							| 2 |  | madjusmdet.a |  |-  A = ( ( 1 ... N ) Mat R ) | 
						
							| 3 |  | madjusmdet.d |  |-  D = ( ( 1 ... N ) maDet R ) | 
						
							| 4 |  | madjusmdet.k |  |-  K = ( ( 1 ... N ) maAdju R ) | 
						
							| 5 |  | madjusmdet.t |  |-  .x. = ( .r ` R ) | 
						
							| 6 |  | madjusmdet.z |  |-  Z = ( ZRHom ` R ) | 
						
							| 7 |  | madjusmdet.e |  |-  E = ( ( 1 ... ( N - 1 ) ) maDet R ) | 
						
							| 8 |  | madjusmdet.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | madjusmdet.r |  |-  ( ph -> R e. CRing ) | 
						
							| 10 |  | madjusmdet.i |  |-  ( ph -> I e. ( 1 ... N ) ) | 
						
							| 11 |  | madjusmdet.j |  |-  ( ph -> J e. ( 1 ... N ) ) | 
						
							| 12 |  | madjusmdet.m |  |-  ( ph -> M e. B ) | 
						
							| 13 |  | madjusmdetlem2.p |  |-  P = ( i e. ( 1 ... N ) |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 14 |  | madjusmdetlem2.s |  |-  S = ( i e. ( 1 ... N ) |-> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) | 
						
							| 15 |  | madjusmdetlem4.q |  |-  Q = ( j e. ( 1 ... N ) |-> if ( j = 1 , J , if ( j <_ J , ( j - 1 ) , j ) ) ) | 
						
							| 16 |  | madjusmdetlem4.t |  |-  T = ( j e. ( 1 ... N ) |-> if ( j = 1 , N , if ( j <_ N , ( j - 1 ) , j ) ) ) | 
						
							| 17 |  | madjusmdetlem3.w |  |-  W = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) | 
						
							| 18 |  | madjusmdetlem3.u |  |-  ( ph -> U e. B ) | 
						
							| 19 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 20 | 8 19 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 21 |  | fzdif2 |  |-  ( N e. ( ZZ>= ` 1 ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 23 |  | difss |  |-  ( ( 1 ... N ) \ { N } ) C_ ( 1 ... N ) | 
						
							| 24 | 22 23 | eqsstrrdi |  |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 26 |  | simprl |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 27 | 25 26 | sseldd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... N ) ) | 
						
							| 28 |  | simprr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 29 | 25 28 | sseldd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... N ) ) | 
						
							| 30 |  | ovexd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) e. _V ) | 
						
							| 31 | 17 | ovmpt4g |  |-  ( ( i e. ( 1 ... N ) /\ j e. ( 1 ... N ) /\ ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) e. _V ) -> ( i W j ) = ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) | 
						
							| 32 | 27 29 30 31 | syl3anc |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i W j ) = ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) | 
						
							| 33 | 26 28 | ovresd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) = ( i W j ) ) | 
						
							| 34 |  | eqid |  |-  ( I ( subMat1 ` U ) J ) = ( I ( subMat1 ` U ) J ) | 
						
							| 35 | 8 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> N e. NN ) | 
						
							| 36 | 10 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> I e. ( 1 ... N ) ) | 
						
							| 37 | 11 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> J e. ( 1 ... N ) ) | 
						
							| 38 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 39 | 2 38 1 | matbas2i |  |-  ( U e. B -> U e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 40 | 18 39 | syl |  |-  ( ph -> U e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> U e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 42 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 43 | 42 27 | sselid |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. NN ) | 
						
							| 44 | 42 29 | sselid |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. NN ) | 
						
							| 45 |  | eqidd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) = if ( i < I , i , ( i + 1 ) ) ) | 
						
							| 46 |  | eqidd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < J , j , ( j + 1 ) ) = if ( j < J , j , ( j + 1 ) ) ) | 
						
							| 47 | 34 35 35 36 37 41 43 44 45 46 | smatlem |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` U ) J ) j ) = ( if ( i < I , i , ( i + 1 ) ) U if ( j < J , j , ( j + 1 ) ) ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 10 10 12 13 14 | madjusmdetlem2 |  |-  ( ( ph /\ i e. ( 1 ... ( N - 1 ) ) ) -> if ( i < I , i , ( i + 1 ) ) = ( ( P o. `' S ) ` i ) ) | 
						
							| 49 | 26 48 | syldan |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) = ( ( P o. `' S ) ` i ) ) | 
						
							| 50 | 1 2 3 4 5 6 7 8 9 11 11 12 15 16 | madjusmdetlem2 |  |-  ( ( ph /\ j e. ( 1 ... ( N - 1 ) ) ) -> if ( j < J , j , ( j + 1 ) ) = ( ( Q o. `' T ) ` j ) ) | 
						
							| 51 | 28 50 | syldan |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < J , j , ( j + 1 ) ) = ( ( Q o. `' T ) ` j ) ) | 
						
							| 52 | 49 51 | oveq12d |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( i < I , i , ( i + 1 ) ) U if ( j < J , j , ( j + 1 ) ) ) = ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) | 
						
							| 53 | 47 52 | eqtrd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` U ) J ) j ) = ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) | 
						
							| 54 | 32 33 53 | 3eqtr4rd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` U ) J ) j ) = ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) ) | 
						
							| 55 | 54 | ralrimivva |  |-  ( ph -> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` U ) J ) j ) = ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) ) | 
						
							| 56 |  | eqid |  |-  ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) | 
						
							| 57 | 2 1 56 34 8 10 11 18 | smatcl |  |-  ( ph -> ( I ( subMat1 ` U ) J ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 58 |  | fzfid |  |-  ( ph -> ( 1 ... N ) e. Fin ) | 
						
							| 59 |  | eqid |  |-  ( 1 ... N ) = ( 1 ... N ) | 
						
							| 60 |  | eqid |  |-  ( SymGrp ` ( 1 ... N ) ) = ( SymGrp ` ( 1 ... N ) ) | 
						
							| 61 |  | eqid |  |-  ( Base ` ( SymGrp ` ( 1 ... N ) ) ) = ( Base ` ( SymGrp ` ( 1 ... N ) ) ) | 
						
							| 62 | 59 13 60 61 | fzto1st |  |-  ( I e. ( 1 ... N ) -> P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 63 | 10 62 | syl |  |-  ( ph -> P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 64 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) | 
						
							| 65 | 20 64 | syl |  |-  ( ph -> N e. ( 1 ... N ) ) | 
						
							| 66 | 59 14 60 61 | fzto1st |  |-  ( N e. ( 1 ... N ) -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 67 | 65 66 | syl |  |-  ( ph -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 68 |  | eqid |  |-  ( invg ` ( SymGrp ` ( 1 ... N ) ) ) = ( invg ` ( SymGrp ` ( 1 ... N ) ) ) | 
						
							| 69 | 60 61 68 | symginv |  |-  ( S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) = `' S ) | 
						
							| 70 | 67 69 | syl |  |-  ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) = `' S ) | 
						
							| 71 | 60 | symggrp |  |-  ( ( 1 ... N ) e. Fin -> ( SymGrp ` ( 1 ... N ) ) e. Grp ) | 
						
							| 72 | 58 71 | syl |  |-  ( ph -> ( SymGrp ` ( 1 ... N ) ) e. Grp ) | 
						
							| 73 | 61 68 | grpinvcl |  |-  ( ( ( SymGrp ` ( 1 ... N ) ) e. Grp /\ S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 74 | 72 67 73 | syl2anc |  |-  ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 75 | 70 74 | eqeltrrd |  |-  ( ph -> `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 76 |  | eqid |  |-  ( +g ` ( SymGrp ` ( 1 ... N ) ) ) = ( +g ` ( SymGrp ` ( 1 ... N ) ) ) | 
						
							| 77 | 60 61 76 | symgov |  |-  ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' S ) = ( P o. `' S ) ) | 
						
							| 78 | 60 61 76 | symgcl |  |-  ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 79 | 77 78 | eqeltrrd |  |-  ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 80 | 63 75 79 | syl2anc |  |-  ( ph -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 81 | 80 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 82 |  | simp2 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) | 
						
							| 83 | 60 61 | symgfv |  |-  ( ( ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( P o. `' S ) ` i ) e. ( 1 ... N ) ) | 
						
							| 84 | 81 82 83 | syl2anc |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( P o. `' S ) ` i ) e. ( 1 ... N ) ) | 
						
							| 85 | 59 15 60 61 | fzto1st |  |-  ( J e. ( 1 ... N ) -> Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 86 | 11 85 | syl |  |-  ( ph -> Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 87 | 59 16 60 61 | fzto1st |  |-  ( N e. ( 1 ... N ) -> T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 88 | 65 87 | syl |  |-  ( ph -> T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 89 | 60 61 68 | symginv |  |-  ( T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) = `' T ) | 
						
							| 90 | 88 89 | syl |  |-  ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) = `' T ) | 
						
							| 91 | 61 68 | grpinvcl |  |-  ( ( ( SymGrp ` ( 1 ... N ) ) e. Grp /\ T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 92 | 72 88 91 | syl2anc |  |-  ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 93 | 90 92 | eqeltrrd |  |-  ( ph -> `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 94 | 60 61 76 | symgov |  |-  ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' T ) = ( Q o. `' T ) ) | 
						
							| 95 | 60 61 76 | symgcl |  |-  ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 96 | 94 95 | eqeltrrd |  |-  ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 97 | 86 93 96 | syl2anc |  |-  ( ph -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 98 | 97 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 99 |  | simp3 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) | 
						
							| 100 | 60 61 | symgfv |  |-  ( ( ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( Q o. `' T ) ` j ) e. ( 1 ... N ) ) | 
						
							| 101 | 98 99 100 | syl2anc |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( Q o. `' T ) ` j ) e. ( 1 ... N ) ) | 
						
							| 102 | 18 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> U e. B ) | 
						
							| 103 | 2 38 1 84 101 102 | matecld |  |-  ( ( ph /\ i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) e. ( Base ` R ) ) | 
						
							| 104 | 2 38 1 58 9 103 | matbas2d |  |-  ( ph -> ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` i ) U ( ( Q o. `' T ) ` j ) ) ) e. B ) | 
						
							| 105 | 17 104 | eqeltrid |  |-  ( ph -> W e. B ) | 
						
							| 106 | 2 1 | submatres |  |-  ( ( N e. NN /\ W e. B ) -> ( N ( subMat1 ` W ) N ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 107 | 8 105 106 | syl2anc |  |-  ( ph -> ( N ( subMat1 ` W ) N ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 108 |  | eqid |  |-  ( N ( subMat1 ` W ) N ) = ( N ( subMat1 ` W ) N ) | 
						
							| 109 | 2 1 56 108 8 65 65 105 | smatcl |  |-  ( ph -> ( N ( subMat1 ` W ) N ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 110 | 107 109 | eqeltrrd |  |-  ( ph -> ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 111 |  | eqid |  |-  ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) | 
						
							| 112 | 111 56 | eqmat |  |-  ( ( ( I ( subMat1 ` U ) J ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) /\ ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) -> ( ( I ( subMat1 ` U ) J ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` U ) J ) j ) = ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) ) ) | 
						
							| 113 | 57 110 112 | syl2anc |  |-  ( ph -> ( ( I ( subMat1 ` U ) J ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` U ) J ) j ) = ( i ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) j ) ) ) | 
						
							| 114 | 55 113 | mpbird |  |-  ( ph -> ( I ( subMat1 ` U ) J ) = ( W |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 115 | 114 107 | eqtr4d |  |-  ( ph -> ( I ( subMat1 ` U ) J ) = ( N ( subMat1 ` W ) N ) ) |