Step |
Hyp |
Ref |
Expression |
1 |
|
submat1n.a |
|- A = ( ( 1 ... N ) Mat R ) |
2 |
|
submat1n.b |
|- B = ( Base ` A ) |
3 |
1 2
|
submat1n |
|- ( ( N e. NN /\ M e. B ) -> ( N ( subMat1 ` M ) N ) = ( N ( ( ( 1 ... N ) subMat R ) ` M ) N ) ) |
4 |
|
simpr |
|- ( ( N e. NN /\ M e. B ) -> M e. B ) |
5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
6 |
5
|
eleq2i |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
7 |
6
|
biimpi |
|- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
8 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) |
9 |
7 8
|
syl |
|- ( N e. NN -> N e. ( 1 ... N ) ) |
10 |
9
|
adantr |
|- ( ( N e. NN /\ M e. B ) -> N e. ( 1 ... N ) ) |
11 |
|
eqid |
|- ( ( 1 ... N ) subMat R ) = ( ( 1 ... N ) subMat R ) |
12 |
1 11 2
|
submaval |
|- ( ( M e. B /\ N e. ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> ( N ( ( ( 1 ... N ) subMat R ) ` M ) N ) = ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i M j ) ) ) |
13 |
4 10 10 12
|
syl3anc |
|- ( ( N e. NN /\ M e. B ) -> ( N ( ( ( 1 ... N ) subMat R ) ` M ) N ) = ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i M j ) ) ) |
14 |
|
fzdif2 |
|- ( N e. ( ZZ>= ` 1 ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
15 |
7 14
|
syl |
|- ( N e. NN -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
16 |
|
difss |
|- ( ( 1 ... N ) \ { N } ) C_ ( 1 ... N ) |
17 |
15 16
|
eqsstrrdi |
|- ( N e. NN -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
18 |
17
|
adantr |
|- ( ( N e. NN /\ M e. B ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
19 |
|
resmpo |
|- ( ( ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) /\ ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) -> ( ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( i M j ) ) |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i M j ) ) ) |
20 |
18 18 19
|
syl2anc |
|- ( ( N e. NN /\ M e. B ) -> ( ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( i M j ) ) |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i M j ) ) ) |
21 |
1 2
|
matmpo |
|- ( M e. B -> M = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( i M j ) ) ) |
22 |
21
|
reseq1d |
|- ( M e. B -> ( M |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( i M j ) ) |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
23 |
22
|
adantl |
|- ( ( N e. NN /\ M e. B ) -> ( M |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( i M j ) ) |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
24 |
15
|
adantr |
|- ( ( N e. NN /\ M e. B ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) |
25 |
|
eqidd |
|- ( ( N e. NN /\ M e. B ) -> ( i M j ) = ( i M j ) ) |
26 |
24 24 25
|
mpoeq123dv |
|- ( ( N e. NN /\ M e. B ) -> ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i M j ) ) = ( i e. ( 1 ... ( N - 1 ) ) , j e. ( 1 ... ( N - 1 ) ) |-> ( i M j ) ) ) |
27 |
20 23 26
|
3eqtr4rd |
|- ( ( N e. NN /\ M e. B ) -> ( i e. ( ( 1 ... N ) \ { N } ) , j e. ( ( 1 ... N ) \ { N } ) |-> ( i M j ) ) = ( M |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
28 |
3 13 27
|
3eqtrd |
|- ( ( N e. NN /\ M e. B ) -> ( N ( subMat1 ` M ) N ) = ( M |` ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |