Step |
Hyp |
Ref |
Expression |
1 |
|
submat1n.a |
⊢ 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 ) |
2 |
|
submat1n.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
1 2
|
submat1n |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ( subMat1 ‘ 𝑀 ) 𝑁 ) = ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑀 ) 𝑁 ) ) |
4 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
5
|
eleq2i |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
7 |
6
|
biimpi |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
8 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
11 |
|
eqid |
⊢ ( ( 1 ... 𝑁 ) subMat 𝑅 ) = ( ( 1 ... 𝑁 ) subMat 𝑅 ) |
12 |
1 11 2
|
submaval |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑀 ) 𝑁 ) = ( 𝑖 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) , 𝑗 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
13 |
4 10 10 12
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑀 ) 𝑁 ) = ( 𝑖 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) , 𝑗 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
14 |
|
fzdif2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
15 |
7 14
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
16 |
|
difss |
⊢ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ⊆ ( 1 ... 𝑁 ) |
17 |
15 16
|
eqsstrrdi |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
19 |
|
resmpo |
⊢ ( ( ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ∧ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( 𝑖 𝑀 𝑗 ) ) ↾ ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) , 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
20 |
18 18 19
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( 𝑖 𝑀 𝑗 ) ) ↾ ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) , 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
21 |
1 2
|
matmpo |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
22 |
21
|
reseq1d |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑀 ↾ ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) = ( ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( 𝑖 𝑀 𝑗 ) ) ↾ ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( 𝑀 ↾ ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) = ( ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( 𝑖 𝑀 𝑗 ) ) ↾ ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) ) |
24 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
25 |
|
eqidd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( 𝑖 𝑀 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
26 |
24 24 25
|
mpoeq123dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( 𝑖 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) , 𝑗 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) , 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
27 |
20 23 26
|
3eqtr4rd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( 𝑖 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) , 𝑗 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) = ( 𝑀 ↾ ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) ) |
28 |
3 13 27
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ( subMat1 ‘ 𝑀 ) 𝑁 ) = ( 𝑀 ↾ ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) ) |