| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submat1n.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 2 |  | submat1n.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 | 1 2 | submat1n | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁 ( subMat1 ‘ 𝑀 ) 𝑁 )  =  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑀 ) 𝑁 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 5 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 6 | 5 | eleq2i | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 7 | 6 | biimpi | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 8 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 11 |  | eqid | ⊢ ( ( 1 ... 𝑁 )  subMat  𝑅 )  =  ( ( 1 ... 𝑁 )  subMat  𝑅 ) | 
						
							| 12 | 1 11 2 | submaval | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑁  ∈  ( 1 ... 𝑁 )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑀 ) 𝑁 )  =  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ,  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 13 | 4 10 10 12 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑀 ) 𝑁 )  =  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ,  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 14 |  | fzdif2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 15 | 7 14 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 16 |  | difss | ⊢ ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ⊆  ( 1 ... 𝑁 ) | 
						
							| 17 | 15 16 | eqsstrrdi | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 19 |  | resmpo | ⊢ ( ( ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 )  ∧  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) )  →  ( ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( 𝑖 𝑀 𝑗 ) )  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ,  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 20 | 18 18 19 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( 𝑖 𝑀 𝑗 ) )  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ,  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 21 | 1 2 | matmpo | ⊢ ( 𝑀  ∈  𝐵  →  𝑀  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 22 | 21 | reseq1d | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑀  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  =  ( ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( 𝑖 𝑀 𝑗 ) )  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( 𝑀  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  =  ( ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( 𝑖 𝑀 𝑗 ) )  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 24 | 15 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 25 |  | eqidd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( 𝑖 𝑀 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 26 | 24 24 25 | mpoeq123dv | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ,  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ↦  ( 𝑖 𝑀 𝑗 ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ,  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 27 | 20 23 26 | 3eqtr4rd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ,  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ↦  ( 𝑖 𝑀 𝑗 ) )  =  ( 𝑀  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 28 | 3 13 27 | 3eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁 ( subMat1 ‘ 𝑀 ) 𝑁 )  =  ( 𝑀  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) |