Metamath Proof Explorer


Theorem madjusmdetlem3

Description: Lemma for madjusmdet . (Contributed by Thierry Arnoux, 27-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B = Base A
madjusmdet.a A = 1 N Mat R
madjusmdet.d D = 1 N maDet R
madjusmdet.k K = 1 N maAdju R
madjusmdet.t · ˙ = R
madjusmdet.z Z = ℤRHom R
madjusmdet.e E = 1 N 1 maDet R
madjusmdet.n φ N
madjusmdet.r φ R CRing
madjusmdet.i φ I 1 N
madjusmdet.j φ J 1 N
madjusmdet.m φ M B
madjusmdetlem2.p P = i 1 N if i = 1 I if i I i 1 i
madjusmdetlem2.s S = i 1 N if i = 1 N if i N i 1 i
madjusmdetlem4.q Q = j 1 N if j = 1 J if j J j 1 j
madjusmdetlem4.t T = j 1 N if j = 1 N if j N j 1 j
madjusmdetlem3.w W = i 1 N , j 1 N P S -1 i U Q T -1 j
madjusmdetlem3.u φ U B
Assertion madjusmdetlem3 φ I subMat 1 U J = N subMat 1 W N

Proof

Step Hyp Ref Expression
1 madjusmdet.b B = Base A
2 madjusmdet.a A = 1 N Mat R
3 madjusmdet.d D = 1 N maDet R
4 madjusmdet.k K = 1 N maAdju R
5 madjusmdet.t · ˙ = R
6 madjusmdet.z Z = ℤRHom R
7 madjusmdet.e E = 1 N 1 maDet R
8 madjusmdet.n φ N
9 madjusmdet.r φ R CRing
10 madjusmdet.i φ I 1 N
11 madjusmdet.j φ J 1 N
12 madjusmdet.m φ M B
13 madjusmdetlem2.p P = i 1 N if i = 1 I if i I i 1 i
14 madjusmdetlem2.s S = i 1 N if i = 1 N if i N i 1 i
15 madjusmdetlem4.q Q = j 1 N if j = 1 J if j J j 1 j
16 madjusmdetlem4.t T = j 1 N if j = 1 N if j N j 1 j
17 madjusmdetlem3.w W = i 1 N , j 1 N P S -1 i U Q T -1 j
18 madjusmdetlem3.u φ U B
19 nnuz = 1
20 8 19 eleqtrdi φ N 1
21 fzdif2 N 1 1 N N = 1 N 1
22 20 21 syl φ 1 N N = 1 N 1
23 difss 1 N N 1 N
24 22 23 eqsstrrdi φ 1 N 1 1 N
25 24 adantr φ i 1 N 1 j 1 N 1 1 N 1 1 N
26 simprl φ i 1 N 1 j 1 N 1 i 1 N 1
27 25 26 sseldd φ i 1 N 1 j 1 N 1 i 1 N
28 simprr φ i 1 N 1 j 1 N 1 j 1 N 1
29 25 28 sseldd φ i 1 N 1 j 1 N 1 j 1 N
30 ovexd φ i 1 N 1 j 1 N 1 P S -1 i U Q T -1 j V
31 17 ovmpt4g i 1 N j 1 N P S -1 i U Q T -1 j V i W j = P S -1 i U Q T -1 j
32 27 29 30 31 syl3anc φ i 1 N 1 j 1 N 1 i W j = P S -1 i U Q T -1 j
33 26 28 ovresd φ i 1 N 1 j 1 N 1 i W 1 N 1 × 1 N 1 j = i W j
34 eqid I subMat 1 U J = I subMat 1 U J
35 8 adantr φ i 1 N 1 j 1 N 1 N
36 10 adantr φ i 1 N 1 j 1 N 1 I 1 N
37 11 adantr φ i 1 N 1 j 1 N 1 J 1 N
38 eqid Base R = Base R
39 2 38 1 matbas2i U B U Base R 1 N × 1 N
40 18 39 syl φ U Base R 1 N × 1 N
41 40 adantr φ i 1 N 1 j 1 N 1 U Base R 1 N × 1 N
42 fz1ssnn 1 N
43 42 27 sselid φ i 1 N 1 j 1 N 1 i
44 42 29 sselid φ i 1 N 1 j 1 N 1 j
45 eqidd φ i 1 N 1 j 1 N 1 if i < I i i + 1 = if i < I i i + 1
46 eqidd φ i 1 N 1 j 1 N 1 if j < J j j + 1 = if j < J j j + 1
47 34 35 35 36 37 41 43 44 45 46 smatlem φ i 1 N 1 j 1 N 1 i I subMat 1 U J j = if i < I i i + 1 U if j < J j j + 1
48 1 2 3 4 5 6 7 8 9 10 10 12 13 14 madjusmdetlem2 φ i 1 N 1 if i < I i i + 1 = P S -1 i
49 26 48 syldan φ i 1 N 1 j 1 N 1 if i < I i i + 1 = P S -1 i
50 1 2 3 4 5 6 7 8 9 11 11 12 15 16 madjusmdetlem2 φ j 1 N 1 if j < J j j + 1 = Q T -1 j
51 28 50 syldan φ i 1 N 1 j 1 N 1 if j < J j j + 1 = Q T -1 j
52 49 51 oveq12d φ i 1 N 1 j 1 N 1 if i < I i i + 1 U if j < J j j + 1 = P S -1 i U Q T -1 j
53 47 52 eqtrd φ i 1 N 1 j 1 N 1 i I subMat 1 U J j = P S -1 i U Q T -1 j
54 32 33 53 3eqtr4rd φ i 1 N 1 j 1 N 1 i I subMat 1 U J j = i W 1 N 1 × 1 N 1 j
55 54 ralrimivva φ i 1 N 1 j 1 N 1 i I subMat 1 U J j = i W 1 N 1 × 1 N 1 j
56 eqid Base 1 N 1 Mat R = Base 1 N 1 Mat R
57 2 1 56 34 8 10 11 18 smatcl φ I subMat 1 U J Base 1 N 1 Mat R
58 fzfid φ 1 N Fin
59 eqid 1 N = 1 N
60 eqid SymGrp 1 N = SymGrp 1 N
61 eqid Base SymGrp 1 N = Base SymGrp 1 N
62 59 13 60 61 fzto1st I 1 N P Base SymGrp 1 N
63 10 62 syl φ P Base SymGrp 1 N
64 eluzfz2 N 1 N 1 N
65 20 64 syl φ N 1 N
66 59 14 60 61 fzto1st N 1 N S Base SymGrp 1 N
67 65 66 syl φ S Base SymGrp 1 N
68 eqid inv g SymGrp 1 N = inv g SymGrp 1 N
69 60 61 68 symginv S Base SymGrp 1 N inv g SymGrp 1 N S = S -1
70 67 69 syl φ inv g SymGrp 1 N S = S -1
71 60 symggrp 1 N Fin SymGrp 1 N Grp
72 58 71 syl φ SymGrp 1 N Grp
73 61 68 grpinvcl SymGrp 1 N Grp S Base SymGrp 1 N inv g SymGrp 1 N S Base SymGrp 1 N
74 72 67 73 syl2anc φ inv g SymGrp 1 N S Base SymGrp 1 N
75 70 74 eqeltrrd φ S -1 Base SymGrp 1 N
76 eqid + SymGrp 1 N = + SymGrp 1 N
77 60 61 76 symgov P Base SymGrp 1 N S -1 Base SymGrp 1 N P + SymGrp 1 N S -1 = P S -1
78 60 61 76 symgcl P Base SymGrp 1 N S -1 Base SymGrp 1 N P + SymGrp 1 N S -1 Base SymGrp 1 N
79 77 78 eqeltrrd P Base SymGrp 1 N S -1 Base SymGrp 1 N P S -1 Base SymGrp 1 N
80 63 75 79 syl2anc φ P S -1 Base SymGrp 1 N
81 80 3ad2ant1 φ i 1 N j 1 N P S -1 Base SymGrp 1 N
82 simp2 φ i 1 N j 1 N i 1 N
83 60 61 symgfv P S -1 Base SymGrp 1 N i 1 N P S -1 i 1 N
84 81 82 83 syl2anc φ i 1 N j 1 N P S -1 i 1 N
85 59 15 60 61 fzto1st J 1 N Q Base SymGrp 1 N
86 11 85 syl φ Q Base SymGrp 1 N
87 59 16 60 61 fzto1st N 1 N T Base SymGrp 1 N
88 65 87 syl φ T Base SymGrp 1 N
89 60 61 68 symginv T Base SymGrp 1 N inv g SymGrp 1 N T = T -1
90 88 89 syl φ inv g SymGrp 1 N T = T -1
91 61 68 grpinvcl SymGrp 1 N Grp T Base SymGrp 1 N inv g SymGrp 1 N T Base SymGrp 1 N
92 72 88 91 syl2anc φ inv g SymGrp 1 N T Base SymGrp 1 N
93 90 92 eqeltrrd φ T -1 Base SymGrp 1 N
94 60 61 76 symgov Q Base SymGrp 1 N T -1 Base SymGrp 1 N Q + SymGrp 1 N T -1 = Q T -1
95 60 61 76 symgcl Q Base SymGrp 1 N T -1 Base SymGrp 1 N Q + SymGrp 1 N T -1 Base SymGrp 1 N
96 94 95 eqeltrrd Q Base SymGrp 1 N T -1 Base SymGrp 1 N Q T -1 Base SymGrp 1 N
97 86 93 96 syl2anc φ Q T -1 Base SymGrp 1 N
98 97 3ad2ant1 φ i 1 N j 1 N Q T -1 Base SymGrp 1 N
99 simp3 φ i 1 N j 1 N j 1 N
100 60 61 symgfv Q T -1 Base SymGrp 1 N j 1 N Q T -1 j 1 N
101 98 99 100 syl2anc φ i 1 N j 1 N Q T -1 j 1 N
102 18 3ad2ant1 φ i 1 N j 1 N U B
103 2 38 1 84 101 102 matecld φ i 1 N j 1 N P S -1 i U Q T -1 j Base R
104 2 38 1 58 9 103 matbas2d φ i 1 N , j 1 N P S -1 i U Q T -1 j B
105 17 104 eqeltrid φ W B
106 2 1 submatres N W B N subMat 1 W N = W 1 N 1 × 1 N 1
107 8 105 106 syl2anc φ N subMat 1 W N = W 1 N 1 × 1 N 1
108 eqid N subMat 1 W N = N subMat 1 W N
109 2 1 56 108 8 65 65 105 smatcl φ N subMat 1 W N Base 1 N 1 Mat R
110 107 109 eqeltrrd φ W 1 N 1 × 1 N 1 Base 1 N 1 Mat R
111 eqid 1 N 1 Mat R = 1 N 1 Mat R
112 111 56 eqmat I subMat 1 U J Base 1 N 1 Mat R W 1 N 1 × 1 N 1 Base 1 N 1 Mat R I subMat 1 U J = W 1 N 1 × 1 N 1 i 1 N 1 j 1 N 1 i I subMat 1 U J j = i W 1 N 1 × 1 N 1 j
113 57 110 112 syl2anc φ I subMat 1 U J = W 1 N 1 × 1 N 1 i 1 N 1 j 1 N 1 i I subMat 1 U J j = i W 1 N 1 × 1 N 1 j
114 55 113 mpbird φ I subMat 1 U J = W 1 N 1 × 1 N 1
115 114 107 eqtr4d φ I subMat 1 U J = N subMat 1 W N