Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
|
2 |
|
madjusmdet.a |
|
3 |
|
madjusmdet.d |
|
4 |
|
madjusmdet.k |
|
5 |
|
madjusmdet.t |
|
6 |
|
madjusmdet.z |
|
7 |
|
madjusmdet.e |
|
8 |
|
madjusmdet.n |
|
9 |
|
madjusmdet.r |
|
10 |
|
madjusmdet.i |
|
11 |
|
madjusmdet.j |
|
12 |
|
madjusmdet.m |
|
13 |
|
madjusmdetlem2.p |
|
14 |
|
madjusmdetlem2.s |
|
15 |
|
madjusmdetlem4.q |
|
16 |
|
madjusmdetlem4.t |
|
17 |
|
madjusmdetlem3.w |
|
18 |
|
madjusmdetlem3.u |
|
19 |
|
nnuz |
|
20 |
8 19
|
eleqtrdi |
|
21 |
|
fzdif2 |
|
22 |
20 21
|
syl |
|
23 |
|
difss |
|
24 |
22 23
|
eqsstrrdi |
|
25 |
24
|
adantr |
|
26 |
|
simprl |
|
27 |
25 26
|
sseldd |
|
28 |
|
simprr |
|
29 |
25 28
|
sseldd |
|
30 |
|
ovexd |
|
31 |
17
|
ovmpt4g |
|
32 |
27 29 30 31
|
syl3anc |
|
33 |
26 28
|
ovresd |
|
34 |
|
eqid |
|
35 |
8
|
adantr |
|
36 |
10
|
adantr |
|
37 |
11
|
adantr |
|
38 |
|
eqid |
|
39 |
2 38 1
|
matbas2i |
|
40 |
18 39
|
syl |
|
41 |
40
|
adantr |
|
42 |
|
fz1ssnn |
|
43 |
42 27
|
sselid |
|
44 |
42 29
|
sselid |
|
45 |
|
eqidd |
|
46 |
|
eqidd |
|
47 |
34 35 35 36 37 41 43 44 45 46
|
smatlem |
|
48 |
1 2 3 4 5 6 7 8 9 10 10 12 13 14
|
madjusmdetlem2 |
|
49 |
26 48
|
syldan |
|
50 |
1 2 3 4 5 6 7 8 9 11 11 12 15 16
|
madjusmdetlem2 |
|
51 |
28 50
|
syldan |
|
52 |
49 51
|
oveq12d |
|
53 |
47 52
|
eqtrd |
|
54 |
32 33 53
|
3eqtr4rd |
|
55 |
54
|
ralrimivva |
|
56 |
|
eqid |
|
57 |
2 1 56 34 8 10 11 18
|
smatcl |
|
58 |
|
fzfid |
|
59 |
|
eqid |
|
60 |
|
eqid |
|
61 |
|
eqid |
|
62 |
59 13 60 61
|
fzto1st |
|
63 |
10 62
|
syl |
|
64 |
|
eluzfz2 |
|
65 |
20 64
|
syl |
|
66 |
59 14 60 61
|
fzto1st |
|
67 |
65 66
|
syl |
|
68 |
|
eqid |
|
69 |
60 61 68
|
symginv |
|
70 |
67 69
|
syl |
|
71 |
60
|
symggrp |
|
72 |
58 71
|
syl |
|
73 |
61 68
|
grpinvcl |
|
74 |
72 67 73
|
syl2anc |
|
75 |
70 74
|
eqeltrrd |
|
76 |
|
eqid |
|
77 |
60 61 76
|
symgov |
|
78 |
60 61 76
|
symgcl |
|
79 |
77 78
|
eqeltrrd |
|
80 |
63 75 79
|
syl2anc |
|
81 |
80
|
3ad2ant1 |
|
82 |
|
simp2 |
|
83 |
60 61
|
symgfv |
|
84 |
81 82 83
|
syl2anc |
|
85 |
59 15 60 61
|
fzto1st |
|
86 |
11 85
|
syl |
|
87 |
59 16 60 61
|
fzto1st |
|
88 |
65 87
|
syl |
|
89 |
60 61 68
|
symginv |
|
90 |
88 89
|
syl |
|
91 |
61 68
|
grpinvcl |
|
92 |
72 88 91
|
syl2anc |
|
93 |
90 92
|
eqeltrrd |
|
94 |
60 61 76
|
symgov |
|
95 |
60 61 76
|
symgcl |
|
96 |
94 95
|
eqeltrrd |
|
97 |
86 93 96
|
syl2anc |
|
98 |
97
|
3ad2ant1 |
|
99 |
|
simp3 |
|
100 |
60 61
|
symgfv |
|
101 |
98 99 100
|
syl2anc |
|
102 |
18
|
3ad2ant1 |
|
103 |
2 38 1 84 101 102
|
matecld |
|
104 |
2 38 1 58 9 103
|
matbas2d |
|
105 |
17 104
|
eqeltrid |
|
106 |
2 1
|
submatres |
|
107 |
8 105 106
|
syl2anc |
|
108 |
|
eqid |
|
109 |
2 1 56 108 8 65 65 105
|
smatcl |
|
110 |
107 109
|
eqeltrrd |
|
111 |
|
eqid |
|
112 |
111 56
|
eqmat |
|
113 |
57 110 112
|
syl2anc |
|
114 |
55 113
|
mpbird |
|
115 |
114 107
|
eqtr4d |
|