| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madjusmdet.b |
|
| 2 |
|
madjusmdet.a |
|
| 3 |
|
madjusmdet.d |
|
| 4 |
|
madjusmdet.k |
|
| 5 |
|
madjusmdet.t |
|
| 6 |
|
madjusmdet.z |
|
| 7 |
|
madjusmdet.e |
|
| 8 |
|
madjusmdet.n |
|
| 9 |
|
madjusmdet.r |
|
| 10 |
|
madjusmdet.i |
|
| 11 |
|
madjusmdet.j |
|
| 12 |
|
madjusmdet.m |
|
| 13 |
|
madjusmdetlem2.p |
|
| 14 |
|
madjusmdetlem2.s |
|
| 15 |
|
madjusmdetlem4.q |
|
| 16 |
|
madjusmdetlem4.t |
|
| 17 |
|
madjusmdetlem3.w |
|
| 18 |
|
madjusmdetlem3.u |
|
| 19 |
|
nnuz |
|
| 20 |
8 19
|
eleqtrdi |
|
| 21 |
|
fzdif2 |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
difss |
|
| 24 |
22 23
|
eqsstrrdi |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simprl |
|
| 27 |
25 26
|
sseldd |
|
| 28 |
|
simprr |
|
| 29 |
25 28
|
sseldd |
|
| 30 |
|
ovexd |
|
| 31 |
17
|
ovmpt4g |
|
| 32 |
27 29 30 31
|
syl3anc |
|
| 33 |
26 28
|
ovresd |
|
| 34 |
|
eqid |
|
| 35 |
8
|
adantr |
|
| 36 |
10
|
adantr |
|
| 37 |
11
|
adantr |
|
| 38 |
|
eqid |
|
| 39 |
2 38 1
|
matbas2i |
|
| 40 |
18 39
|
syl |
|
| 41 |
40
|
adantr |
|
| 42 |
|
fz1ssnn |
|
| 43 |
42 27
|
sselid |
|
| 44 |
42 29
|
sselid |
|
| 45 |
|
eqidd |
|
| 46 |
|
eqidd |
|
| 47 |
34 35 35 36 37 41 43 44 45 46
|
smatlem |
|
| 48 |
1 2 3 4 5 6 7 8 9 10 10 12 13 14
|
madjusmdetlem2 |
|
| 49 |
26 48
|
syldan |
|
| 50 |
1 2 3 4 5 6 7 8 9 11 11 12 15 16
|
madjusmdetlem2 |
|
| 51 |
28 50
|
syldan |
|
| 52 |
49 51
|
oveq12d |
|
| 53 |
47 52
|
eqtrd |
|
| 54 |
32 33 53
|
3eqtr4rd |
|
| 55 |
54
|
ralrimivva |
|
| 56 |
|
eqid |
|
| 57 |
2 1 56 34 8 10 11 18
|
smatcl |
|
| 58 |
|
fzfid |
|
| 59 |
|
eqid |
|
| 60 |
|
eqid |
|
| 61 |
|
eqid |
|
| 62 |
59 13 60 61
|
fzto1st |
|
| 63 |
10 62
|
syl |
|
| 64 |
|
eluzfz2 |
|
| 65 |
20 64
|
syl |
|
| 66 |
59 14 60 61
|
fzto1st |
|
| 67 |
65 66
|
syl |
|
| 68 |
|
eqid |
|
| 69 |
60 61 68
|
symginv |
|
| 70 |
67 69
|
syl |
|
| 71 |
60
|
symggrp |
|
| 72 |
58 71
|
syl |
|
| 73 |
61 68
|
grpinvcl |
|
| 74 |
72 67 73
|
syl2anc |
|
| 75 |
70 74
|
eqeltrrd |
|
| 76 |
|
eqid |
|
| 77 |
60 61 76
|
symgov |
|
| 78 |
60 61 76
|
symgcl |
|
| 79 |
77 78
|
eqeltrrd |
|
| 80 |
63 75 79
|
syl2anc |
|
| 81 |
80
|
3ad2ant1 |
|
| 82 |
|
simp2 |
|
| 83 |
60 61
|
symgfv |
|
| 84 |
81 82 83
|
syl2anc |
|
| 85 |
59 15 60 61
|
fzto1st |
|
| 86 |
11 85
|
syl |
|
| 87 |
59 16 60 61
|
fzto1st |
|
| 88 |
65 87
|
syl |
|
| 89 |
60 61 68
|
symginv |
|
| 90 |
88 89
|
syl |
|
| 91 |
61 68
|
grpinvcl |
|
| 92 |
72 88 91
|
syl2anc |
|
| 93 |
90 92
|
eqeltrrd |
|
| 94 |
60 61 76
|
symgov |
|
| 95 |
60 61 76
|
symgcl |
|
| 96 |
94 95
|
eqeltrrd |
|
| 97 |
86 93 96
|
syl2anc |
|
| 98 |
97
|
3ad2ant1 |
|
| 99 |
|
simp3 |
|
| 100 |
60 61
|
symgfv |
|
| 101 |
98 99 100
|
syl2anc |
|
| 102 |
18
|
3ad2ant1 |
|
| 103 |
2 38 1 84 101 102
|
matecld |
|
| 104 |
2 38 1 58 9 103
|
matbas2d |
|
| 105 |
17 104
|
eqeltrid |
|
| 106 |
2 1
|
submatres |
|
| 107 |
8 105 106
|
syl2anc |
|
| 108 |
|
eqid |
|
| 109 |
2 1 56 108 8 65 65 105
|
smatcl |
|
| 110 |
107 109
|
eqeltrrd |
|
| 111 |
|
eqid |
|
| 112 |
111 56
|
eqmat |
|
| 113 |
57 110 112
|
syl2anc |
|
| 114 |
55 113
|
mpbird |
|
| 115 |
114 107
|
eqtr4d |
|