Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
|
2 |
|
madjusmdet.a |
|
3 |
|
madjusmdet.d |
|
4 |
|
madjusmdet.k |
|
5 |
|
madjusmdet.t |
|
6 |
|
madjusmdet.z |
|
7 |
|
madjusmdet.e |
|
8 |
|
madjusmdet.n |
|
9 |
|
madjusmdet.r |
|
10 |
|
madjusmdet.i |
|
11 |
|
madjusmdet.j |
|
12 |
|
madjusmdet.m |
|
13 |
|
madjusmdetlem2.p |
|
14 |
|
madjusmdetlem2.s |
|
15 |
|
nnuz |
|
16 |
8 15
|
eleqtrdi |
|
17 |
|
eluzfz2 |
|
18 |
16 17
|
syl |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
19 14 20 21
|
fzto1st |
|
23 |
18 22
|
syl |
|
24 |
20 21
|
symgbasf1o |
|
25 |
23 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
|
fznatpl1 |
|
28 |
8 27
|
sylan |
|
29 |
|
eqeq1 |
|
30 |
|
breq1 |
|
31 |
|
oveq1 |
|
32 |
|
id |
|
33 |
30 31 32
|
ifbieq12d |
|
34 |
29 33
|
ifbieq2d |
|
35 |
34
|
cbvmptv |
|
36 |
14 35
|
eqtri |
|
37 |
36
|
a1i |
|
38 |
|
simpr |
|
39 |
|
1red |
|
40 |
|
fz1ssnn |
|
41 |
|
simpr |
|
42 |
40 41
|
sselid |
|
43 |
42
|
nnrpd |
|
44 |
43
|
adantr |
|
45 |
39 44
|
ltaddrp2d |
|
46 |
39 45
|
ltned |
|
47 |
46
|
necomd |
|
48 |
38 47
|
eqnetrd |
|
49 |
48
|
neneqd |
|
50 |
49
|
iffalsed |
|
51 |
8
|
adantr |
|
52 |
42
|
nnnn0d |
|
53 |
51
|
nnnn0d |
|
54 |
|
elfzle2 |
|
55 |
41 54
|
syl |
|
56 |
|
nn0ltlem1 |
|
57 |
56
|
biimpar |
|
58 |
52 53 55 57
|
syl21anc |
|
59 |
|
nnltp1le |
|
60 |
59
|
biimpa |
|
61 |
42 51 58 60
|
syl21anc |
|
62 |
61
|
adantr |
|
63 |
38 62
|
eqbrtrd |
|
64 |
63
|
iftrued |
|
65 |
38
|
oveq1d |
|
66 |
42
|
nncnd |
|
67 |
|
1cnd |
|
68 |
66 67
|
pncand |
|
69 |
68
|
adantr |
|
70 |
65 69
|
eqtrd |
|
71 |
50 64 70
|
3eqtrd |
|
72 |
37 71 28 41
|
fvmptd |
|
73 |
72
|
idi |
|
74 |
|
f1ocnvfv |
|
75 |
74
|
imp |
|
76 |
26 28 73 75
|
syl21anc |
|
77 |
76
|
fveq2d |
|
78 |
77
|
adantr |
|
79 |
32
|
breq1d |
|
80 |
79 31 32
|
ifbieq12d |
|
81 |
29 80
|
ifbieq2d |
|
82 |
81
|
cbvmptv |
|
83 |
13 82
|
eqtri |
|
84 |
83
|
a1i |
|
85 |
45 38
|
breqtrrd |
|
86 |
39 85
|
ltned |
|
87 |
86
|
necomd |
|
88 |
87
|
neneqd |
|
89 |
88
|
iffalsed |
|
90 |
89
|
adantlr |
|
91 |
|
simpr |
|
92 |
42
|
ad2antrr |
|
93 |
|
fz1ssnn |
|
94 |
93 10
|
sselid |
|
95 |
94
|
ad3antrrr |
|
96 |
|
simplr |
|
97 |
|
nnltp1le |
|
98 |
97
|
biimpa |
|
99 |
92 95 96 98
|
syl21anc |
|
100 |
91 99
|
eqbrtrd |
|
101 |
100
|
iftrued |
|
102 |
70
|
adantlr |
|
103 |
90 101 102
|
3eqtrd |
|
104 |
28
|
adantr |
|
105 |
|
simplr |
|
106 |
84 103 104 105
|
fvmptd |
|
107 |
78 106
|
eqtr2d |
|
108 |
77
|
adantr |
|
109 |
83
|
a1i |
|
110 |
89
|
adantlr |
|
111 |
42
|
ad2antrr |
|
112 |
94
|
ad3antrrr |
|
113 |
38
|
adantr |
|
114 |
|
simpr |
|
115 |
113 114
|
eqbrtrrd |
|
116 |
97
|
biimpar |
|
117 |
111 112 115 116
|
syl21anc |
|
118 |
117
|
ex |
|
119 |
118
|
con3d |
|
120 |
119
|
imp |
|
121 |
120
|
an32s |
|
122 |
121
|
iffalsed |
|
123 |
|
simpr |
|
124 |
122 123
|
eqtrd |
|
125 |
110 124
|
eqtrd |
|
126 |
28
|
adantr |
|
127 |
109 125 126 126
|
fvmptd |
|
128 |
108 127
|
eqtr2d |
|
129 |
107 128
|
ifeqda |
|
130 |
|
f1ocnv |
|
131 |
23 24 130
|
3syl |
|
132 |
|
f1ofun |
|
133 |
131 132
|
syl |
|
134 |
133
|
adantr |
|
135 |
|
fzdif2 |
|
136 |
16 135
|
syl |
|
137 |
|
difss |
|
138 |
136 137
|
eqsstrrdi |
|
139 |
|
f1odm |
|
140 |
131 139
|
syl |
|
141 |
138 140
|
sseqtrrd |
|
142 |
141
|
adantr |
|
143 |
142 41
|
sseldd |
|
144 |
|
fvco |
|
145 |
134 143 144
|
syl2anc |
|
146 |
129 145
|
eqtr4d |
|