Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
|
2 |
|
madjusmdet.a |
|
3 |
|
madjusmdet.d |
|
4 |
|
madjusmdet.k |
|
5 |
|
madjusmdet.t |
|
6 |
|
madjusmdet.z |
|
7 |
|
madjusmdet.e |
|
8 |
|
madjusmdet.n |
|
9 |
|
madjusmdet.r |
|
10 |
|
madjusmdet.i |
|
11 |
|
madjusmdet.j |
|
12 |
|
madjusmdet.m |
|
13 |
|
madjusmdetlem2.p |
|
14 |
|
madjusmdetlem2.s |
|
15 |
|
nnuz |
|
16 |
8 15
|
eleqtrdi |
|
17 |
|
eluzfz2 |
|
18 |
16 17
|
syl |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
19 14 20 21
|
fzto1st |
|
23 |
18 22
|
syl |
|
24 |
20 21
|
symgbasf1o |
|
25 |
23 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
|
fznatpl1 |
|
28 |
8 27
|
sylan |
|
29 |
|
eqeq1 |
|
30 |
|
breq1 |
|
31 |
|
oveq1 |
|
32 |
|
id |
|
33 |
30 31 32
|
ifbieq12d |
|
34 |
29 33
|
ifbieq2d |
|
35 |
34
|
cbvmptv |
|
36 |
14 35
|
eqtri |
|
37 |
|
simpr |
|
38 |
|
1red |
|
39 |
|
fz1ssnn |
|
40 |
|
simpr |
|
41 |
39 40
|
sselid |
|
42 |
41
|
nnrpd |
|
43 |
42
|
adantr |
|
44 |
38 43
|
ltaddrp2d |
|
45 |
38 44
|
gtned |
|
46 |
37 45
|
eqnetrd |
|
47 |
46
|
neneqd |
|
48 |
47
|
iffalsed |
|
49 |
8
|
adantr |
|
50 |
41
|
nnnn0d |
|
51 |
49
|
nnnn0d |
|
52 |
|
elfzle2 |
|
53 |
40 52
|
syl |
|
54 |
|
nn0ltlem1 |
|
55 |
54
|
biimpar |
|
56 |
50 51 53 55
|
syl21anc |
|
57 |
|
nnltp1le |
|
58 |
57
|
biimpa |
|
59 |
41 49 56 58
|
syl21anc |
|
60 |
59
|
adantr |
|
61 |
37 60
|
eqbrtrd |
|
62 |
61
|
iftrued |
|
63 |
37
|
oveq1d |
|
64 |
41
|
nncnd |
|
65 |
|
1cnd |
|
66 |
64 65
|
pncand |
|
67 |
66
|
adantr |
|
68 |
63 67
|
eqtrd |
|
69 |
48 62 68
|
3eqtrd |
|
70 |
36 69 28 40
|
fvmptd2 |
|
71 |
|
f1ocnvfv |
|
72 |
71
|
imp |
|
73 |
26 28 70 72
|
syl21anc |
|
74 |
73
|
fveq2d |
|
75 |
74
|
adantr |
|
76 |
|
breq1 |
|
77 |
76 31 32
|
ifbieq12d |
|
78 |
29 77
|
ifbieq2d |
|
79 |
78
|
cbvmptv |
|
80 |
13 79
|
eqtri |
|
81 |
44 37
|
breqtrrd |
|
82 |
38 81
|
gtned |
|
83 |
82
|
neneqd |
|
84 |
83
|
iffalsed |
|
85 |
84
|
adantlr |
|
86 |
|
simpr |
|
87 |
41
|
ad2antrr |
|
88 |
|
fz1ssnn |
|
89 |
88 10
|
sselid |
|
90 |
89
|
ad3antrrr |
|
91 |
|
simplr |
|
92 |
|
nnltp1le |
|
93 |
92
|
biimpa |
|
94 |
87 90 91 93
|
syl21anc |
|
95 |
86 94
|
eqbrtrd |
|
96 |
95
|
iftrued |
|
97 |
68
|
adantlr |
|
98 |
85 96 97
|
3eqtrd |
|
99 |
28
|
adantr |
|
100 |
|
simplr |
|
101 |
80 98 99 100
|
fvmptd2 |
|
102 |
75 101
|
eqtr2d |
|
103 |
74
|
adantr |
|
104 |
84
|
adantlr |
|
105 |
41
|
ad2antrr |
|
106 |
89
|
ad3antrrr |
|
107 |
|
simplr |
|
108 |
|
simpr |
|
109 |
107 108
|
eqbrtrrd |
|
110 |
92
|
biimpar |
|
111 |
105 106 109 110
|
syl21anc |
|
112 |
111
|
stoic1a |
|
113 |
112
|
an32s |
|
114 |
113
|
iffalsed |
|
115 |
|
simpr |
|
116 |
104 114 115
|
3eqtrd |
|
117 |
28
|
adantr |
|
118 |
80 116 117 117
|
fvmptd2 |
|
119 |
103 118
|
eqtr2d |
|
120 |
102 119
|
ifeqda |
|
121 |
|
f1ocnv |
|
122 |
23 24 121
|
3syl |
|
123 |
|
f1ofun |
|
124 |
122 123
|
syl |
|
125 |
|
fzdif2 |
|
126 |
16 125
|
syl |
|
127 |
|
difss |
|
128 |
126 127
|
eqsstrrdi |
|
129 |
|
f1odm |
|
130 |
122 129
|
syl |
|
131 |
128 130
|
sseqtrrd |
|
132 |
131
|
sselda |
|
133 |
|
fvco |
|
134 |
124 132 133
|
syl2an2r |
|
135 |
120 134
|
eqtr4d |
|