| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madjusmdet.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 2 |
|
madjusmdet.a |
⊢ 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 ) |
| 3 |
|
madjusmdet.d |
⊢ 𝐷 = ( ( 1 ... 𝑁 ) maDet 𝑅 ) |
| 4 |
|
madjusmdet.k |
⊢ 𝐾 = ( ( 1 ... 𝑁 ) maAdju 𝑅 ) |
| 5 |
|
madjusmdet.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
madjusmdet.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
| 7 |
|
madjusmdet.e |
⊢ 𝐸 = ( ( 1 ... ( 𝑁 − 1 ) ) maDet 𝑅 ) |
| 8 |
|
madjusmdet.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 9 |
|
madjusmdet.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 10 |
|
madjusmdet.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
| 11 |
|
madjusmdet.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
| 12 |
|
madjusmdet.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 13 |
|
madjusmdetlem2.p |
⊢ 𝑃 = ( 𝑖 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
| 14 |
|
madjusmdetlem2.s |
⊢ 𝑆 = ( 𝑖 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 1 , 𝑁 , if ( 𝑖 ≤ 𝑁 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
| 15 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 16 |
8 15
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 17 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 19 |
|
eqid |
⊢ ( 1 ... 𝑁 ) = ( 1 ... 𝑁 ) |
| 20 |
|
eqid |
⊢ ( SymGrp ‘ ( 1 ... 𝑁 ) ) = ( SymGrp ‘ ( 1 ... 𝑁 ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) = ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) |
| 22 |
19 14 20 21
|
fzto1st |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
| 23 |
18 22
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
| 24 |
20 21
|
symgbasf1o |
⊢ ( 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) → 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 27 |
|
fznatpl1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑋 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 28 |
8 27
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑋 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 29 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑖 = 1 ↔ 𝑥 = 1 ) ) |
| 30 |
|
breq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑖 ≤ 𝑁 ↔ 𝑥 ≤ 𝑁 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑖 − 1 ) = ( 𝑥 − 1 ) ) |
| 32 |
|
id |
⊢ ( 𝑖 = 𝑥 → 𝑖 = 𝑥 ) |
| 33 |
30 31 32
|
ifbieq12d |
⊢ ( 𝑖 = 𝑥 → if ( 𝑖 ≤ 𝑁 , ( 𝑖 − 1 ) , 𝑖 ) = if ( 𝑥 ≤ 𝑁 , ( 𝑥 − 1 ) , 𝑥 ) ) |
| 34 |
29 33
|
ifbieq2d |
⊢ ( 𝑖 = 𝑥 → if ( 𝑖 = 1 , 𝑁 , if ( 𝑖 ≤ 𝑁 , ( 𝑖 − 1 ) , 𝑖 ) ) = if ( 𝑥 = 1 , 𝑁 , if ( 𝑥 ≤ 𝑁 , ( 𝑥 − 1 ) , 𝑥 ) ) ) |
| 35 |
34
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 1 , 𝑁 , if ( 𝑖 ≤ 𝑁 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑥 = 1 , 𝑁 , if ( 𝑥 ≤ 𝑁 , ( 𝑥 − 1 ) , 𝑥 ) ) ) |
| 36 |
14 35
|
eqtri |
⊢ 𝑆 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑥 = 1 , 𝑁 , if ( 𝑥 ≤ 𝑁 , ( 𝑥 − 1 ) , 𝑥 ) ) ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑥 = ( 𝑋 + 1 ) ) |
| 38 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 1 ∈ ℝ ) |
| 39 |
|
fz1ssnn |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ℕ |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 41 |
39 40
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑋 ∈ ℕ ) |
| 42 |
41
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑋 ∈ ℝ+ ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑋 ∈ ℝ+ ) |
| 44 |
38 43
|
ltaddrp2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 1 < ( 𝑋 + 1 ) ) |
| 45 |
38 44
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ( 𝑋 + 1 ) ≠ 1 ) |
| 46 |
37 45
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑥 ≠ 1 ) |
| 47 |
46
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ¬ 𝑥 = 1 ) |
| 48 |
47
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 = 1 , 𝑁 , if ( 𝑥 ≤ 𝑁 , ( 𝑥 − 1 ) , 𝑥 ) ) = if ( 𝑥 ≤ 𝑁 , ( 𝑥 − 1 ) , 𝑥 ) ) |
| 49 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℕ ) |
| 50 |
41
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑋 ∈ ℕ0 ) |
| 51 |
49
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 52 |
|
elfzle2 |
⊢ ( 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑋 ≤ ( 𝑁 − 1 ) ) |
| 53 |
40 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑋 ≤ ( 𝑁 − 1 ) ) |
| 54 |
|
nn0ltlem1 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 < 𝑁 ↔ 𝑋 ≤ ( 𝑁 − 1 ) ) ) |
| 55 |
54
|
biimpar |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑋 ≤ ( 𝑁 − 1 ) ) → 𝑋 < 𝑁 ) |
| 56 |
50 51 53 55
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑋 < 𝑁 ) |
| 57 |
|
nnltp1le |
⊢ ( ( 𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑋 < 𝑁 ↔ ( 𝑋 + 1 ) ≤ 𝑁 ) ) |
| 58 |
57
|
biimpa |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑋 < 𝑁 ) → ( 𝑋 + 1 ) ≤ 𝑁 ) |
| 59 |
41 49 56 58
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑋 + 1 ) ≤ 𝑁 ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ( 𝑋 + 1 ) ≤ 𝑁 ) |
| 61 |
37 60
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑥 ≤ 𝑁 ) |
| 62 |
61
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 ≤ 𝑁 , ( 𝑥 − 1 ) , 𝑥 ) = ( 𝑥 − 1 ) ) |
| 63 |
37
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ( 𝑥 − 1 ) = ( ( 𝑋 + 1 ) − 1 ) ) |
| 64 |
41
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑋 ∈ ℂ ) |
| 65 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ℂ ) |
| 66 |
64 65
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑋 + 1 ) − 1 ) = 𝑋 ) |
| 67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ( ( 𝑋 + 1 ) − 1 ) = 𝑋 ) |
| 68 |
63 67
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ( 𝑥 − 1 ) = 𝑋 ) |
| 69 |
48 62 68
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 = 1 , 𝑁 , if ( 𝑥 ≤ 𝑁 , ( 𝑥 − 1 ) , 𝑥 ) ) = 𝑋 ) |
| 70 |
36 69 28 40
|
fvmptd2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑆 ‘ ( 𝑋 + 1 ) ) = 𝑋 ) |
| 71 |
|
f1ocnvfv |
⊢ ( ( 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 𝑋 + 1 ) ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑆 ‘ ( 𝑋 + 1 ) ) = 𝑋 → ( ◡ 𝑆 ‘ 𝑋 ) = ( 𝑋 + 1 ) ) ) |
| 72 |
71
|
imp |
⊢ ( ( ( 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 𝑋 + 1 ) ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑆 ‘ ( 𝑋 + 1 ) ) = 𝑋 ) → ( ◡ 𝑆 ‘ 𝑋 ) = ( 𝑋 + 1 ) ) |
| 73 |
26 28 70 72
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ◡ 𝑆 ‘ 𝑋 ) = ( 𝑋 + 1 ) ) |
| 74 |
73
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑋 ) ) = ( 𝑃 ‘ ( 𝑋 + 1 ) ) ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) → ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑋 ) ) = ( 𝑃 ‘ ( 𝑋 + 1 ) ) ) |
| 76 |
|
breq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑖 ≤ 𝐼 ↔ 𝑥 ≤ 𝐼 ) ) |
| 77 |
76 31 32
|
ifbieq12d |
⊢ ( 𝑖 = 𝑥 → if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) = if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) |
| 78 |
29 77
|
ifbieq2d |
⊢ ( 𝑖 = 𝑥 → if ( 𝑖 = 1 , 𝐼 , if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) = if ( 𝑥 = 1 , 𝐼 , if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) ) |
| 79 |
78
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑥 = 1 , 𝐼 , if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) ) |
| 80 |
13 79
|
eqtri |
⊢ 𝑃 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑥 = 1 , 𝐼 , if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) ) |
| 81 |
44 37
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 1 < 𝑥 ) |
| 82 |
38 81
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑥 ≠ 1 ) |
| 83 |
82
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ¬ 𝑥 = 1 ) |
| 84 |
83
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 = 1 , 𝐼 , if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) = if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) |
| 85 |
84
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 = 1 , 𝐼 , if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) = if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) |
| 86 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑥 = ( 𝑋 + 1 ) ) |
| 87 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑋 ∈ ℕ ) |
| 88 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 89 |
88 10
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
| 90 |
89
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝐼 ∈ ℕ ) |
| 91 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑋 < 𝐼 ) |
| 92 |
|
nnltp1le |
⊢ ( ( 𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ ) → ( 𝑋 < 𝐼 ↔ ( 𝑋 + 1 ) ≤ 𝐼 ) ) |
| 93 |
92
|
biimpa |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ ) ∧ 𝑋 < 𝐼 ) → ( 𝑋 + 1 ) ≤ 𝐼 ) |
| 94 |
87 90 91 93
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ( 𝑋 + 1 ) ≤ 𝐼 ) |
| 95 |
86 94
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑥 ≤ 𝐼 ) |
| 96 |
95
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) = ( 𝑥 − 1 ) ) |
| 97 |
68
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ( 𝑥 − 1 ) = 𝑋 ) |
| 98 |
85 96 97
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 = 1 , 𝐼 , if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) = 𝑋 ) |
| 99 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) → ( 𝑋 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 100 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) → 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 101 |
80 98 99 100
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) → ( 𝑃 ‘ ( 𝑋 + 1 ) ) = 𝑋 ) |
| 102 |
75 101
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑋 < 𝐼 ) → 𝑋 = ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑋 ) ) ) |
| 103 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) → ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑋 ) ) = ( 𝑃 ‘ ( 𝑋 + 1 ) ) ) |
| 104 |
84
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 = 1 , 𝐼 , if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) = if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) |
| 105 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) ∧ 𝑥 ≤ 𝐼 ) → 𝑋 ∈ ℕ ) |
| 106 |
89
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) ∧ 𝑥 ≤ 𝐼 ) → 𝐼 ∈ ℕ ) |
| 107 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) ∧ 𝑥 ≤ 𝐼 ) → 𝑥 = ( 𝑋 + 1 ) ) |
| 108 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) ∧ 𝑥 ≤ 𝐼 ) → 𝑥 ≤ 𝐼 ) |
| 109 |
107 108
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) ∧ 𝑥 ≤ 𝐼 ) → ( 𝑋 + 1 ) ≤ 𝐼 ) |
| 110 |
92
|
biimpar |
⊢ ( ( ( 𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ ) ∧ ( 𝑋 + 1 ) ≤ 𝐼 ) → 𝑋 < 𝐼 ) |
| 111 |
105 106 109 110
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) ∧ 𝑥 ≤ 𝐼 ) → 𝑋 < 𝐼 ) |
| 112 |
111
|
stoic1a |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝑥 = ( 𝑋 + 1 ) ) ∧ ¬ 𝑋 < 𝐼 ) → ¬ 𝑥 ≤ 𝐼 ) |
| 113 |
112
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → ¬ 𝑥 ≤ 𝐼 ) |
| 114 |
113
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) = 𝑥 ) |
| 115 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → 𝑥 = ( 𝑋 + 1 ) ) |
| 116 |
104 114 115
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝑋 + 1 ) ) → if ( 𝑥 = 1 , 𝐼 , if ( 𝑥 ≤ 𝐼 , ( 𝑥 − 1 ) , 𝑥 ) ) = ( 𝑋 + 1 ) ) |
| 117 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) → ( 𝑋 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 118 |
80 116 117 117
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) → ( 𝑃 ‘ ( 𝑋 + 1 ) ) = ( 𝑋 + 1 ) ) |
| 119 |
103 118
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ¬ 𝑋 < 𝐼 ) → ( 𝑋 + 1 ) = ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑋 ) ) ) |
| 120 |
102 119
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) = ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑋 ) ) ) |
| 121 |
|
f1ocnv |
⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ◡ 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 122 |
23 24 121
|
3syl |
⊢ ( 𝜑 → ◡ 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 123 |
|
f1ofun |
⊢ ( ◡ 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ 𝑆 ) |
| 124 |
122 123
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝑆 ) |
| 125 |
|
fzdif2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 126 |
16 125
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 127 |
|
difss |
⊢ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ⊆ ( 1 ... 𝑁 ) |
| 128 |
126 127
|
eqsstrrdi |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 129 |
|
f1odm |
⊢ ( ◡ 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → dom ◡ 𝑆 = ( 1 ... 𝑁 ) ) |
| 130 |
122 129
|
syl |
⊢ ( 𝜑 → dom ◡ 𝑆 = ( 1 ... 𝑁 ) ) |
| 131 |
128 130
|
sseqtrrd |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ dom ◡ 𝑆 ) |
| 132 |
131
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑋 ∈ dom ◡ 𝑆 ) |
| 133 |
|
fvco |
⊢ ( ( Fun ◡ 𝑆 ∧ 𝑋 ∈ dom ◡ 𝑆 ) → ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑋 ) = ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑋 ) ) ) |
| 134 |
124 132 133
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑋 ) = ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑋 ) ) ) |
| 135 |
120 134
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) = ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑋 ) ) |