| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 2 |  | madjusmdet.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 3 |  | madjusmdet.d | ⊢ 𝐷  =  ( ( 1 ... 𝑁 )  maDet  𝑅 ) | 
						
							| 4 |  | madjusmdet.k | ⊢ 𝐾  =  ( ( 1 ... 𝑁 )  maAdju  𝑅 ) | 
						
							| 5 |  | madjusmdet.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | madjusmdet.z | ⊢ 𝑍  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 7 |  | madjusmdet.e | ⊢ 𝐸  =  ( ( 1 ... ( 𝑁  −  1 ) )  maDet  𝑅 ) | 
						
							| 8 |  | madjusmdet.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | madjusmdet.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | madjusmdet.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 11 |  | madjusmdet.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 12 |  | madjusmdet.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐵 ) | 
						
							| 13 |  | madjusmdetlem2.p | ⊢ 𝑃  =  ( 𝑖  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 14 |  | madjusmdetlem2.s | ⊢ 𝑆  =  ( 𝑖  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  1 ,  𝑁 ,  if ( 𝑖  ≤  𝑁 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 15 |  | madjusmdetlem4.q | ⊢ 𝑄  =  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑗  =  1 ,  𝐽 ,  if ( 𝑗  ≤  𝐽 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) ) | 
						
							| 16 |  | madjusmdetlem4.t | ⊢ 𝑇  =  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑗  =  1 ,  𝑁 ,  if ( 𝑗  ≤  𝑁 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) ) | 
						
							| 17 |  | madjusmdetlem3.w | ⊢ 𝑊  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) ) | 
						
							| 18 |  | madjusmdetlem3.u | ⊢ ( 𝜑  →  𝑈  ∈  𝐵 ) | 
						
							| 19 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 20 | 8 19 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 21 |  | fzdif2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 23 |  | difss | ⊢ ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ⊆  ( 1 ... 𝑁 ) | 
						
							| 24 | 22 23 | eqsstrrdi | ⊢ ( 𝜑  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 26 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 27 | 25 26 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 28 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 29 | 25 28 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 30 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) )  ∈  V ) | 
						
							| 31 | 17 | ovmpt4g | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 )  ∧  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) )  ∈  V )  →  ( 𝑖 𝑊 𝑗 )  =  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) ) | 
						
							| 32 | 27 29 30 31 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑖 𝑊 𝑗 )  =  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) ) | 
						
							| 33 | 26 28 | ovresd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑖 ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) 𝑗 )  =  ( 𝑖 𝑊 𝑗 ) ) | 
						
							| 34 |  | eqid | ⊢ ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 )  =  ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) | 
						
							| 35 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 36 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 37 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 39 | 2 38 1 | matbas2i | ⊢ ( 𝑈  ∈  𝐵  →  𝑈  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 40 | 18 39 | syl | ⊢ ( 𝜑  →  𝑈  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑈  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 42 |  | fz1ssnn | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 43 | 42 27 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑖  ∈  ℕ ) | 
						
							| 44 | 42 29 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 45 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  if ( 𝑖  <  𝐼 ,  𝑖 ,  ( 𝑖  +  1 ) )  =  if ( 𝑖  <  𝐼 ,  𝑖 ,  ( 𝑖  +  1 ) ) ) | 
						
							| 46 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  if ( 𝑗  <  𝐽 ,  𝑗 ,  ( 𝑗  +  1 ) )  =  if ( 𝑗  <  𝐽 ,  𝑗 ,  ( 𝑗  +  1 ) ) ) | 
						
							| 47 | 34 35 35 36 37 41 43 44 45 46 | smatlem | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑖 ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) 𝑗 )  =  ( if ( 𝑖  <  𝐼 ,  𝑖 ,  ( 𝑖  +  1 ) ) 𝑈 if ( 𝑗  <  𝐽 ,  𝑗 ,  ( 𝑗  +  1 ) ) ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 10 10 12 13 14 | madjusmdetlem2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  if ( 𝑖  <  𝐼 ,  𝑖 ,  ( 𝑖  +  1 ) )  =  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) ) | 
						
							| 49 | 26 48 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  if ( 𝑖  <  𝐼 ,  𝑖 ,  ( 𝑖  +  1 ) )  =  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) ) | 
						
							| 50 | 1 2 3 4 5 6 7 8 9 11 11 12 15 16 | madjusmdetlem2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  if ( 𝑗  <  𝐽 ,  𝑗 ,  ( 𝑗  +  1 ) )  =  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) | 
						
							| 51 | 28 50 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  if ( 𝑗  <  𝐽 ,  𝑗 ,  ( 𝑗  +  1 ) )  =  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) | 
						
							| 52 | 49 51 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( if ( 𝑖  <  𝐼 ,  𝑖 ,  ( 𝑖  +  1 ) ) 𝑈 if ( 𝑗  <  𝐽 ,  𝑗 ,  ( 𝑗  +  1 ) ) )  =  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) ) | 
						
							| 53 | 47 52 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑖 ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) 𝑗 )  =  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) ) | 
						
							| 54 | 32 33 53 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑖 ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) 𝑗 )  =  ( 𝑖 ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) 𝑗 ) ) | 
						
							| 55 | 54 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∀ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑖 ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) 𝑗 )  =  ( 𝑖 ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) 𝑗 ) ) | 
						
							| 56 |  | eqid | ⊢ ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) )  =  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) | 
						
							| 57 | 2 1 56 34 8 10 11 18 | smatcl | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 58 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 59 |  | eqid | ⊢ ( 1 ... 𝑁 )  =  ( 1 ... 𝑁 ) | 
						
							| 60 |  | eqid | ⊢ ( SymGrp ‘ ( 1 ... 𝑁 ) )  =  ( SymGrp ‘ ( 1 ... 𝑁 ) ) | 
						
							| 61 |  | eqid | ⊢ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  =  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 62 | 59 13 60 61 | fzto1st | ⊢ ( 𝐼  ∈  ( 1 ... 𝑁 )  →  𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 63 | 10 62 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 64 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 65 | 20 64 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 66 | 59 14 60 61 | fzto1st | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( 𝜑  →  𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 68 |  | eqid | ⊢ ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  =  ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 69 | 60 61 68 | symginv | ⊢ ( 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 )  =  ◡ 𝑆 ) | 
						
							| 70 | 67 69 | syl | ⊢ ( 𝜑  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 )  =  ◡ 𝑆 ) | 
						
							| 71 | 60 | symggrp | ⊢ ( ( 1 ... 𝑁 )  ∈  Fin  →  ( SymGrp ‘ ( 1 ... 𝑁 ) )  ∈  Grp ) | 
						
							| 72 | 58 71 | syl | ⊢ ( 𝜑  →  ( SymGrp ‘ ( 1 ... 𝑁 ) )  ∈  Grp ) | 
						
							| 73 | 61 68 | grpinvcl | ⊢ ( ( ( SymGrp ‘ ( 1 ... 𝑁 ) )  ∈  Grp  ∧  𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 74 | 72 67 73 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 75 | 70 74 | eqeltrrd | ⊢ ( 𝜑  →  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 76 |  | eqid | ⊢ ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  =  ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 77 | 60 61 76 | symgov | ⊢ ( ( 𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑃 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑆 )  =  ( 𝑃  ∘  ◡ 𝑆 ) ) | 
						
							| 78 | 60 61 76 | symgcl | ⊢ ( ( 𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑃 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 79 | 77 78 | eqeltrrd | ⊢ ( ( 𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑃  ∘  ◡ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 80 | 63 75 79 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∘  ◡ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 81 | 80 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑃  ∘  ◡ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 82 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 83 | 60 61 | symgfv | ⊢ ( ( ( 𝑃  ∘  ◡ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 84 | 81 82 83 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 85 | 59 15 60 61 | fzto1st | ⊢ ( 𝐽  ∈  ( 1 ... 𝑁 )  →  𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 86 | 11 85 | syl | ⊢ ( 𝜑  →  𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 87 | 59 16 60 61 | fzto1st | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 88 | 65 87 | syl | ⊢ ( 𝜑  →  𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 89 | 60 61 68 | symginv | ⊢ ( 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 )  =  ◡ 𝑇 ) | 
						
							| 90 | 88 89 | syl | ⊢ ( 𝜑  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 )  =  ◡ 𝑇 ) | 
						
							| 91 | 61 68 | grpinvcl | ⊢ ( ( ( SymGrp ‘ ( 1 ... 𝑁 ) )  ∈  Grp  ∧  𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 92 | 72 88 91 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 93 | 90 92 | eqeltrrd | ⊢ ( 𝜑  →  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 94 | 60 61 76 | symgov | ⊢ ( ( 𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑄 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑇 )  =  ( 𝑄  ∘  ◡ 𝑇 ) ) | 
						
							| 95 | 60 61 76 | symgcl | ⊢ ( ( 𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑄 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 96 | 94 95 | eqeltrrd | ⊢ ( ( 𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑄  ∘  ◡ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 97 | 86 93 96 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄  ∘  ◡ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 98 | 97 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄  ∘  ◡ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 99 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 100 | 60 61 | symgfv | ⊢ ( ( ( 𝑄  ∘  ◡ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 101 | 98 99 100 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 102 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑈  ∈  𝐵 ) | 
						
							| 103 | 2 38 1 84 101 102 | matecld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 104 | 2 38 1 58 9 103 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) 𝑈 ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) )  ∈  𝐵 ) | 
						
							| 105 | 17 104 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  𝐵 ) | 
						
							| 106 | 2 1 | submatres | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑊  ∈  𝐵 )  →  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 )  =  ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 107 | 8 105 106 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 )  =  ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 108 |  | eqid | ⊢ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 )  =  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) | 
						
							| 109 | 2 1 56 108 8 65 65 105 | smatcl | ⊢ ( 𝜑  →  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 110 | 107 109 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 111 |  | eqid | ⊢ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 )  =  ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) | 
						
							| 112 | 111 56 | eqmat | ⊢ ( ( ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) )  ∧  ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) )  →  ( ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 )  =  ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∀ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑖 ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) 𝑗 )  =  ( 𝑖 ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) 𝑗 ) ) ) | 
						
							| 113 | 57 110 112 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 )  =  ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∀ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑖 ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) 𝑗 )  =  ( 𝑖 ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) 𝑗 ) ) ) | 
						
							| 114 | 55 113 | mpbird | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 )  =  ( 𝑊  ↾  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 115 | 114 107 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 )  =  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) |