| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetpmtr.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mdetpmtr.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mdetpmtr.d |  |-  D = ( N maDet R ) | 
						
							| 4 |  | mdetpmtr.g |  |-  G = ( Base ` ( SymGrp ` N ) ) | 
						
							| 5 |  | mdetpmtr.s |  |-  S = ( pmSgn ` N ) | 
						
							| 6 |  | mdetpmtr.z |  |-  Z = ( ZRHom ` R ) | 
						
							| 7 |  | mdetpmtr.t |  |-  .x. = ( .r ` R ) | 
						
							| 8 |  | mdetpmtr2.e |  |-  E = ( i e. N , j e. N |-> ( i M ( P ` j ) ) ) | 
						
							| 9 |  | simpll |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> R e. CRing ) | 
						
							| 10 |  | simplr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> N e. Fin ) | 
						
							| 11 | 1 2 | mattposcl |  |-  ( M e. B -> tpos M e. B ) | 
						
							| 12 | 11 | ad2antrl |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> tpos M e. B ) | 
						
							| 13 |  | simprr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> P e. G ) | 
						
							| 14 |  | ovtpos |  |-  ( ( P ` j ) tpos M i ) = ( i M ( P ` j ) ) | 
						
							| 15 | 14 | eqcomi |  |-  ( i M ( P ` j ) ) = ( ( P ` j ) tpos M i ) | 
						
							| 16 | 15 | a1i |  |-  ( ( i e. N /\ j e. N ) -> ( i M ( P ` j ) ) = ( ( P ` j ) tpos M i ) ) | 
						
							| 17 | 16 | mpoeq3ia |  |-  ( i e. N , j e. N |-> ( i M ( P ` j ) ) ) = ( i e. N , j e. N |-> ( ( P ` j ) tpos M i ) ) | 
						
							| 18 | 8 17 | eqtri |  |-  E = ( i e. N , j e. N |-> ( ( P ` j ) tpos M i ) ) | 
						
							| 19 | 18 | tposmpo |  |-  tpos E = ( j e. N , i e. N |-> ( ( P ` j ) tpos M i ) ) | 
						
							| 20 | 1 2 3 4 5 6 7 19 | mdetpmtr1 |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( tpos M e. B /\ P e. G ) ) -> ( D ` tpos M ) = ( ( ( Z o. S ) ` P ) .x. ( D ` tpos E ) ) ) | 
						
							| 21 | 9 10 12 13 20 | syl22anc |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> ( D ` tpos M ) = ( ( ( Z o. S ) ` P ) .x. ( D ` tpos E ) ) ) | 
						
							| 22 | 3 1 2 | mdettpos |  |-  ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( D ` M ) ) | 
						
							| 23 | 22 | ad2ant2r |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> ( D ` tpos M ) = ( D ` M ) ) | 
						
							| 24 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 25 |  | simp2 |  |-  ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) /\ i e. N /\ j e. N ) -> i e. N ) | 
						
							| 26 | 13 | 3ad2ant1 |  |-  ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) /\ i e. N /\ j e. N ) -> P e. G ) | 
						
							| 27 |  | simp3 |  |-  ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) /\ i e. N /\ j e. N ) -> j e. N ) | 
						
							| 28 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 29 | 28 4 | symgfv |  |-  ( ( P e. G /\ j e. N ) -> ( P ` j ) e. N ) | 
						
							| 30 | 26 27 29 | syl2anc |  |-  ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) /\ i e. N /\ j e. N ) -> ( P ` j ) e. N ) | 
						
							| 31 |  | simp1rl |  |-  ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) /\ i e. N /\ j e. N ) -> M e. B ) | 
						
							| 32 | 1 24 2 25 30 31 | matecld |  |-  ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) /\ i e. N /\ j e. N ) -> ( i M ( P ` j ) ) e. ( Base ` R ) ) | 
						
							| 33 | 1 24 2 10 9 32 | matbas2d |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> ( i e. N , j e. N |-> ( i M ( P ` j ) ) ) e. B ) | 
						
							| 34 | 8 33 | eqeltrid |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> E e. B ) | 
						
							| 35 | 3 1 2 | mdettpos |  |-  ( ( R e. CRing /\ E e. B ) -> ( D ` tpos E ) = ( D ` E ) ) | 
						
							| 36 | 9 34 35 | syl2anc |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> ( D ` tpos E ) = ( D ` E ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> ( ( ( Z o. S ) ` P ) .x. ( D ` tpos E ) ) = ( ( ( Z o. S ) ` P ) .x. ( D ` E ) ) ) | 
						
							| 38 | 21 23 37 | 3eqtr3d |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> ( D ` M ) = ( ( ( Z o. S ) ` P ) .x. ( D ` E ) ) ) |