| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetpmtr.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mdetpmtr.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | mdetpmtr.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 4 |  | mdetpmtr.g | ⊢ 𝐺  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 5 |  | mdetpmtr.s | ⊢ 𝑆  =  ( pmSgn ‘ 𝑁 ) | 
						
							| 6 |  | mdetpmtr.z | ⊢ 𝑍  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 7 |  | mdetpmtr.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | mdetpmtr2.e | ⊢ 𝐸  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 9 |  | simpll | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  𝑁  ∈  Fin ) | 
						
							| 11 | 1 2 | mattposcl | ⊢ ( 𝑀  ∈  𝐵  →  tpos  𝑀  ∈  𝐵 ) | 
						
							| 12 | 11 | ad2antrl | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  tpos  𝑀  ∈  𝐵 ) | 
						
							| 13 |  | simprr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  𝑃  ∈  𝐺 ) | 
						
							| 14 |  | ovtpos | ⊢ ( ( 𝑃 ‘ 𝑗 ) tpos  𝑀 𝑖 )  =  ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 15 | 14 | eqcomi | ⊢ ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) )  =  ( ( 𝑃 ‘ 𝑗 ) tpos  𝑀 𝑖 ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) )  =  ( ( 𝑃 ‘ 𝑗 ) tpos  𝑀 𝑖 ) ) | 
						
							| 17 | 16 | mpoeq3ia | ⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑗 ) tpos  𝑀 𝑖 ) ) | 
						
							| 18 | 8 17 | eqtri | ⊢ 𝐸  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑗 ) tpos  𝑀 𝑖 ) ) | 
						
							| 19 | 18 | tposmpo | ⊢ tpos  𝐸  =  ( 𝑗  ∈  𝑁 ,  𝑖  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑗 ) tpos  𝑀 𝑖 ) ) | 
						
							| 20 | 1 2 3 4 5 6 7 19 | mdetpmtr1 | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( tpos  𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  ( 𝐷 ‘ tpos  𝑀 )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( 𝐷 ‘ tpos  𝐸 ) ) ) | 
						
							| 21 | 9 10 12 13 20 | syl22anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  ( 𝐷 ‘ tpos  𝑀 )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( 𝐷 ‘ tpos  𝐸 ) ) ) | 
						
							| 22 | 3 1 2 | mdettpos | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐷 ‘ tpos  𝑀 )  =  ( 𝐷 ‘ 𝑀 ) ) | 
						
							| 23 | 22 | ad2ant2r | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  ( 𝐷 ‘ tpos  𝑀 )  =  ( 𝐷 ‘ 𝑀 ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 25 |  | simp2 | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 26 | 13 | 3ad2ant1 | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  𝐺 ) | 
						
							| 27 |  | simp3 | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 28 |  | eqid | ⊢ ( SymGrp ‘ 𝑁 )  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 29 | 28 4 | symgfv | ⊢ ( ( 𝑃  ∈  𝐺  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃 ‘ 𝑗 )  ∈  𝑁 ) | 
						
							| 30 | 26 27 29 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃 ‘ 𝑗 )  ∈  𝑁 ) | 
						
							| 31 |  | simp1rl | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 32 | 1 24 2 25 30 31 | matecld | ⊢ ( ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 | 1 24 2 10 9 32 | matbas2d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) )  ∈  𝐵 ) | 
						
							| 34 | 8 33 | eqeltrid | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  𝐸  ∈  𝐵 ) | 
						
							| 35 | 3 1 2 | mdettpos | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝐸  ∈  𝐵 )  →  ( 𝐷 ‘ tpos  𝐸 )  =  ( 𝐷 ‘ 𝐸 ) ) | 
						
							| 36 | 9 34 35 | syl2anc | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  ( 𝐷 ‘ tpos  𝐸 )  =  ( 𝐷 ‘ 𝐸 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( 𝐷 ‘ tpos  𝐸 ) )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( 𝐷 ‘ 𝐸 ) ) ) | 
						
							| 38 | 21 23 37 | 3eqtr3d | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  ( 𝐷 ‘ 𝑀 )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( 𝐷 ‘ 𝐸 ) ) ) |