Step |
Hyp |
Ref |
Expression |
1 |
|
mdetpmtr.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mdetpmtr.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mdetpmtr.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
4 |
|
mdetpmtr.g |
⊢ 𝐺 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
5 |
|
mdetpmtr.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
6 |
|
mdetpmtr.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
7 |
|
mdetpmtr.t |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mdetpmtr2.e |
⊢ 𝐸 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) ) |
9 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → 𝑅 ∈ CRing ) |
10 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → 𝑁 ∈ Fin ) |
11 |
1 2
|
mattposcl |
⊢ ( 𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵 ) |
12 |
11
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → tpos 𝑀 ∈ 𝐵 ) |
13 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → 𝑃 ∈ 𝐺 ) |
14 |
|
ovtpos |
⊢ ( ( 𝑃 ‘ 𝑗 ) tpos 𝑀 𝑖 ) = ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) |
15 |
14
|
eqcomi |
⊢ ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) = ( ( 𝑃 ‘ 𝑗 ) tpos 𝑀 𝑖 ) |
16 |
15
|
a1i |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) = ( ( 𝑃 ‘ 𝑗 ) tpos 𝑀 𝑖 ) ) |
17 |
16
|
mpoeq3ia |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑗 ) tpos 𝑀 𝑖 ) ) |
18 |
8 17
|
eqtri |
⊢ 𝐸 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑗 ) tpos 𝑀 𝑖 ) ) |
19 |
18
|
tposmpo |
⊢ tpos 𝐸 = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑗 ) tpos 𝑀 𝑖 ) ) |
20 |
1 2 3 4 5 6 7 19
|
mdetpmtr1 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( tpos 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( 𝐷 ‘ tpos 𝑀 ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ tpos 𝐸 ) ) ) |
21 |
9 10 12 13 20
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( 𝐷 ‘ tpos 𝑀 ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ tpos 𝐸 ) ) ) |
22 |
3 1 2
|
mdettpos |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝐷 ‘ 𝑀 ) ) |
23 |
22
|
ad2ant2r |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝐷 ‘ 𝑀 ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
25 |
|
simp2 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
26 |
13
|
3ad2ant1 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑃 ∈ 𝐺 ) |
27 |
|
simp3 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
28 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
29 |
28 4
|
symgfv |
⊢ ( ( 𝑃 ∈ 𝐺 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑗 ) ∈ 𝑁 ) |
30 |
26 27 29
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑗 ) ∈ 𝑁 ) |
31 |
|
simp1rl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
32 |
1 24 2 25 30 31
|
matecld |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
1 24 2 10 9 32
|
matbas2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 𝑀 ( 𝑃 ‘ 𝑗 ) ) ) ∈ 𝐵 ) |
34 |
8 33
|
eqeltrid |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → 𝐸 ∈ 𝐵 ) |
35 |
3 1 2
|
mdettpos |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐸 ∈ 𝐵 ) → ( 𝐷 ‘ tpos 𝐸 ) = ( 𝐷 ‘ 𝐸 ) ) |
36 |
9 34 35
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( 𝐷 ‘ tpos 𝐸 ) = ( 𝐷 ‘ 𝐸 ) ) |
37 |
36
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ tpos 𝐸 ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ 𝐸 ) ) ) |
38 |
21 23 37
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( 𝐷 ‘ 𝑀 ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ 𝐸 ) ) ) |