Metamath Proof Explorer


Theorem mdetpmtr2

Description: The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses mdetpmtr.a A = N Mat R
mdetpmtr.b B = Base A
mdetpmtr.d D = N maDet R
mdetpmtr.g G = Base SymGrp N
mdetpmtr.s S = pmSgn N
mdetpmtr.z Z = ℤRHom R
mdetpmtr.t · ˙ = R
mdetpmtr2.e E = i N , j N i M P j
Assertion mdetpmtr2 R CRing N Fin M B P G D M = Z S P · ˙ D E

Proof

Step Hyp Ref Expression
1 mdetpmtr.a A = N Mat R
2 mdetpmtr.b B = Base A
3 mdetpmtr.d D = N maDet R
4 mdetpmtr.g G = Base SymGrp N
5 mdetpmtr.s S = pmSgn N
6 mdetpmtr.z Z = ℤRHom R
7 mdetpmtr.t · ˙ = R
8 mdetpmtr2.e E = i N , j N i M P j
9 simpll R CRing N Fin M B P G R CRing
10 simplr R CRing N Fin M B P G N Fin
11 1 2 mattposcl M B tpos M B
12 11 ad2antrl R CRing N Fin M B P G tpos M B
13 simprr R CRing N Fin M B P G P G
14 ovtpos P j tpos M i = i M P j
15 14 eqcomi i M P j = P j tpos M i
16 15 a1i i N j N i M P j = P j tpos M i
17 16 mpoeq3ia i N , j N i M P j = i N , j N P j tpos M i
18 8 17 eqtri E = i N , j N P j tpos M i
19 18 tposmpo tpos E = j N , i N P j tpos M i
20 1 2 3 4 5 6 7 19 mdetpmtr1 R CRing N Fin tpos M B P G D tpos M = Z S P · ˙ D tpos E
21 9 10 12 13 20 syl22anc R CRing N Fin M B P G D tpos M = Z S P · ˙ D tpos E
22 3 1 2 mdettpos R CRing M B D tpos M = D M
23 22 ad2ant2r R CRing N Fin M B P G D tpos M = D M
24 eqid Base R = Base R
25 simp2 R CRing N Fin M B P G i N j N i N
26 13 3ad2ant1 R CRing N Fin M B P G i N j N P G
27 simp3 R CRing N Fin M B P G i N j N j N
28 eqid SymGrp N = SymGrp N
29 28 4 symgfv P G j N P j N
30 26 27 29 syl2anc R CRing N Fin M B P G i N j N P j N
31 simp1rl R CRing N Fin M B P G i N j N M B
32 1 24 2 25 30 31 matecld R CRing N Fin M B P G i N j N i M P j Base R
33 1 24 2 10 9 32 matbas2d R CRing N Fin M B P G i N , j N i M P j B
34 8 33 eqeltrid R CRing N Fin M B P G E B
35 3 1 2 mdettpos R CRing E B D tpos E = D E
36 9 34 35 syl2anc R CRing N Fin M B P G D tpos E = D E
37 36 oveq2d R CRing N Fin M B P G Z S P · ˙ D tpos E = Z S P · ˙ D E
38 21 23 37 3eqtr3d R CRing N Fin M B P G D M = Z S P · ˙ D E