Step |
Hyp |
Ref |
Expression |
1 |
|
mdetpmtr.a |
|
2 |
|
mdetpmtr.b |
|
3 |
|
mdetpmtr.d |
|
4 |
|
mdetpmtr.g |
|
5 |
|
mdetpmtr.s |
|
6 |
|
mdetpmtr.z |
|
7 |
|
mdetpmtr.t |
|
8 |
|
mdetpmtr2.e |
|
9 |
|
simpll |
|
10 |
|
simplr |
|
11 |
1 2
|
mattposcl |
|
12 |
11
|
ad2antrl |
|
13 |
|
simprr |
|
14 |
|
ovtpos |
|
15 |
14
|
eqcomi |
|
16 |
15
|
a1i |
|
17 |
16
|
mpoeq3ia |
|
18 |
8 17
|
eqtri |
|
19 |
18
|
tposmpo |
|
20 |
1 2 3 4 5 6 7 19
|
mdetpmtr1 |
|
21 |
9 10 12 13 20
|
syl22anc |
|
22 |
3 1 2
|
mdettpos |
|
23 |
22
|
ad2ant2r |
|
24 |
|
eqid |
|
25 |
|
simp2 |
|
26 |
13
|
3ad2ant1 |
|
27 |
|
simp3 |
|
28 |
|
eqid |
|
29 |
28 4
|
symgfv |
|
30 |
26 27 29
|
syl2anc |
|
31 |
|
simp1rl |
|
32 |
1 24 2 25 30 31
|
matecld |
|
33 |
1 24 2 10 9 32
|
matbas2d |
|
34 |
8 33
|
eqeltrid |
|
35 |
3 1 2
|
mdettpos |
|
36 |
9 34 35
|
syl2anc |
|
37 |
36
|
oveq2d |
|
38 |
21 23 37
|
3eqtr3d |
|