| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetpmtr.a |
|
| 2 |
|
mdetpmtr.b |
|
| 3 |
|
mdetpmtr.d |
|
| 4 |
|
mdetpmtr.g |
|
| 5 |
|
mdetpmtr.s |
|
| 6 |
|
mdetpmtr.z |
|
| 7 |
|
mdetpmtr.t |
|
| 8 |
|
mdetpmtr12.e |
|
| 9 |
|
mdetmptr12.r |
|
| 10 |
|
mdetmptr12.n |
|
| 11 |
|
mdetmptr12.m |
|
| 12 |
|
mdetmptr12.p |
|
| 13 |
|
mdetmptr12.q |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
oveq2 |
|
| 17 |
15 16
|
cbvmpov |
|
| 18 |
1 2 3 4 5 6 7 17
|
mdetpmtr1 |
|
| 19 |
9 10 11 12 18
|
syl22anc |
|
| 20 |
|
eqid |
|
| 21 |
12
|
3ad2ant1 |
|
| 22 |
|
simp2 |
|
| 23 |
|
eqid |
|
| 24 |
23 4
|
symgfv |
|
| 25 |
21 22 24
|
syl2anc |
|
| 26 |
|
simp3 |
|
| 27 |
11
|
3ad2ant1 |
|
| 28 |
1 20 2 25 26 27
|
matecld |
|
| 29 |
1 20 2 10 9 28
|
matbas2d |
|
| 30 |
|
eqid |
|
| 31 |
1 2 3 4 5 6 7 30
|
mdetpmtr2 |
|
| 32 |
9 10 29 13 31
|
syl22anc |
|
| 33 |
|
simp2 |
|
| 34 |
13
|
3ad2ant1 |
|
| 35 |
|
simp3 |
|
| 36 |
23 4
|
symgfv |
|
| 37 |
34 35 36
|
syl2anc |
|
| 38 |
|
oveq2 |
|
| 39 |
|
eqid |
|
| 40 |
|
ovex |
|
| 41 |
15 38 39 40
|
ovmpo |
|
| 42 |
33 37 41
|
syl2anc |
|
| 43 |
42
|
mpoeq3dva |
|
| 44 |
8 43
|
eqtr4id |
|
| 45 |
44
|
fveq2d |
|
| 46 |
45
|
oveq2d |
|
| 47 |
32 46
|
eqtr4d |
|
| 48 |
47
|
oveq2d |
|
| 49 |
|
crngring |
|
| 50 |
9 49
|
syl |
|
| 51 |
4 5 6
|
zrhcopsgnelbas |
|
| 52 |
50 10 12 51
|
syl3anc |
|
| 53 |
4 5 6
|
zrhcopsgnelbas |
|
| 54 |
50 10 13 53
|
syl3anc |
|
| 55 |
12
|
3ad2ant1 |
|
| 56 |
23 4
|
symgfv |
|
| 57 |
55 33 56
|
syl2anc |
|
| 58 |
11
|
3ad2ant1 |
|
| 59 |
1 20 2 57 37 58
|
matecld |
|
| 60 |
1 20 2 10 9 59
|
matbas2d |
|
| 61 |
8 60
|
eqeltrid |
|
| 62 |
3 1 2 20
|
mdetcl |
|
| 63 |
9 61 62
|
syl2anc |
|
| 64 |
20 7
|
ringass |
|
| 65 |
50 52 54 63 64
|
syl13anc |
|
| 66 |
4 5
|
cofipsgn |
|
| 67 |
10 12 66
|
syl2anc |
|
| 68 |
4 5
|
cofipsgn |
|
| 69 |
10 13 68
|
syl2anc |
|
| 70 |
67 69
|
oveq12d |
|
| 71 |
6
|
zrhrhm |
|
| 72 |
50 71
|
syl |
|
| 73 |
|
1z |
|
| 74 |
|
neg1z |
|
| 75 |
|
prssi |
|
| 76 |
73 74 75
|
mp2an |
|
| 77 |
4 5
|
psgnran |
|
| 78 |
10 12 77
|
syl2anc |
|
| 79 |
76 78
|
sselid |
|
| 80 |
4 5
|
psgnran |
|
| 81 |
10 13 80
|
syl2anc |
|
| 82 |
76 81
|
sselid |
|
| 83 |
|
zringbas |
|
| 84 |
|
zringmulr |
|
| 85 |
83 84 7
|
rhmmul |
|
| 86 |
72 79 82 85
|
syl3anc |
|
| 87 |
70 86
|
eqtr4d |
|
| 88 |
87
|
oveq1d |
|
| 89 |
65 88
|
eqtr3d |
|
| 90 |
19 48 89
|
3eqtrd |
|