Step |
Hyp |
Ref |
Expression |
1 |
|
mdetpmtr.a |
|
2 |
|
mdetpmtr.b |
|
3 |
|
mdetpmtr.d |
|
4 |
|
mdetpmtr.g |
|
5 |
|
mdetpmtr.s |
|
6 |
|
mdetpmtr.z |
|
7 |
|
mdetpmtr.t |
|
8 |
|
mdetpmtr1.e |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
crngring |
|
12 |
11
|
ad2antrr |
|
13 |
4
|
fvexi |
|
14 |
13
|
a1i |
|
15 |
|
simplr |
|
16 |
5 4
|
psgndmfi |
|
17 |
|
fnfun |
|
18 |
15 16 17
|
3syl |
|
19 |
|
simprr |
|
20 |
|
fndm |
|
21 |
15 16 20
|
3syl |
|
22 |
19 21
|
eleqtrrd |
|
23 |
|
fvco |
|
24 |
18 22 23
|
syl2anc |
|
25 |
4 5 6
|
zrhpsgnelbas |
|
26 |
12 15 19 25
|
syl3anc |
|
27 |
24 26
|
eqeltrd |
|
28 |
12
|
adantr |
|
29 |
4 5
|
cofipsgn |
|
30 |
15 29
|
sylan |
|
31 |
|
simpllr |
|
32 |
|
simpr |
|
33 |
4 5 6
|
zrhpsgnelbas |
|
34 |
28 31 32 33
|
syl3anc |
|
35 |
30 34
|
eqeltrd |
|
36 |
|
eqid |
|
37 |
36 9
|
mgpbas |
|
38 |
36
|
crngmgp |
|
39 |
38
|
ad3antrrr |
|
40 |
|
eqid |
|
41 |
40 4
|
symgfv |
|
42 |
41
|
adantll |
|
43 |
|
simpr |
|
44 |
|
simpll |
|
45 |
|
simp1rr |
|
46 |
|
simp2 |
|
47 |
40 4
|
symgfv |
|
48 |
45 46 47
|
syl2anc |
|
49 |
|
simp3 |
|
50 |
|
simp1rl |
|
51 |
1 9 2 48 49 50
|
matecld |
|
52 |
1 9 2 15 44 51
|
matbas2d |
|
53 |
8 52
|
eqeltrid |
|
54 |
53
|
ad2antrr |
|
55 |
1 9 2 42 43 54
|
matecld |
|
56 |
55
|
ralrimiva |
|
57 |
37 39 31 56
|
gsummptcl |
|
58 |
9 7
|
ringcl |
|
59 |
28 35 57 58
|
syl3anc |
|
60 |
|
eqid |
|
61 |
40 4
|
symgbasfi |
|
62 |
15 61
|
syl |
|
63 |
|
ovexd |
|
64 |
|
fvexd |
|
65 |
60 62 63 64
|
fsuppmptdm |
|
66 |
9 10 7 12 14 27 59 65
|
gsummulc2 |
|
67 |
|
nfcv |
|
68 |
|
fveq2 |
|
69 |
|
fveq1 |
|
70 |
69
|
oveq1d |
|
71 |
70
|
mpteq2dv |
|
72 |
71
|
oveq2d |
|
73 |
68 72
|
oveq12d |
|
74 |
|
ringcmn |
|
75 |
12 74
|
syl |
|
76 |
|
ssidd |
|
77 |
12
|
adantr |
|
78 |
4 5
|
cofipsgn |
|
79 |
15 78
|
sylan |
|
80 |
|
simpllr |
|
81 |
|
simpr |
|
82 |
4 5 6
|
zrhpsgnelbas |
|
83 |
77 80 81 82
|
syl3anc |
|
84 |
79 83
|
eqeltrd |
|
85 |
38
|
ad3antrrr |
|
86 |
40 4
|
symgfv |
|
87 |
86
|
adantll |
|
88 |
|
simpr |
|
89 |
|
simprl |
|
90 |
89
|
ad2antrr |
|
91 |
1 9 2 87 88 90
|
matecld |
|
92 |
91
|
ralrimiva |
|
93 |
37 85 80 92
|
gsummptcl |
|
94 |
9 7
|
ringcl |
|
95 |
77 84 93 94
|
syl3anc |
|
96 |
|
eqid |
|
97 |
40 4 96
|
symgov |
|
98 |
40 4 96
|
symgcl |
|
99 |
97 98
|
eqeltrrd |
|
100 |
19 99
|
sylan |
|
101 |
19
|
adantr |
|
102 |
4
|
symgfcoeu |
|
103 |
80 101 81 102
|
syl3anc |
|
104 |
67 9 10 73 75 62 76 95 100 103
|
gsummptf1o |
|
105 |
3 1 2 4 6 5 7 36
|
mdetleib |
|
106 |
105
|
ad2antrl |
|
107 |
27
|
adantr |
|
108 |
9 7
|
ringass |
|
109 |
28 107 35 57 108
|
syl13anc |
|
110 |
24
|
adantr |
|
111 |
110 30
|
oveq12d |
|
112 |
4 5
|
cofipsgn |
|
113 |
31 100 112
|
syl2anc |
|
114 |
19
|
adantr |
|
115 |
40 5 4
|
psgnco |
|
116 |
31 114 32 115
|
syl3anc |
|
117 |
116
|
fveq2d |
|
118 |
6
|
zrhrhm |
|
119 |
12 118
|
syl |
|
120 |
119
|
adantr |
|
121 |
|
1z |
|
122 |
|
neg1z |
|
123 |
|
prssi |
|
124 |
121 122 123
|
mp2an |
|
125 |
4 5
|
psgnran |
|
126 |
31 114 125
|
syl2anc |
|
127 |
124 126
|
sselid |
|
128 |
4 5
|
psgnran |
|
129 |
15 128
|
sylan |
|
130 |
124 129
|
sselid |
|
131 |
|
zringbas |
|
132 |
|
zringmulr |
|
133 |
131 132 7
|
rhmmul |
|
134 |
120 127 130 133
|
syl3anc |
|
135 |
113 117 134
|
3eqtrrd |
|
136 |
111 135
|
eqtrd |
|
137 |
8
|
a1i |
|
138 |
|
simprl |
|
139 |
138
|
fveq2d |
|
140 |
|
simpllr |
|
141 |
40 4
|
symgbasf |
|
142 |
|
ffun |
|
143 |
140 141 142
|
3syl |
|
144 |
|
simplr |
|
145 |
|
fdm |
|
146 |
140 141 145
|
3syl |
|
147 |
144 146
|
eleqtrrd |
|
148 |
|
fvco |
|
149 |
143 147 148
|
syl2anc |
|
150 |
139 149
|
eqtr4d |
|
151 |
|
simprr |
|
152 |
150 151
|
oveq12d |
|
153 |
|
ovexd |
|
154 |
137 152 42 43 153
|
ovmpod |
|
155 |
154
|
mpteq2dva |
|
156 |
155
|
oveq2d |
|
157 |
136 156
|
oveq12d |
|
158 |
109 157
|
eqtr3d |
|
159 |
158
|
mpteq2dva |
|
160 |
159
|
oveq2d |
|
161 |
104 106 160
|
3eqtr4d |
|
162 |
3 1 2 4 6 5 7 36
|
mdetleib |
|
163 |
53 162
|
syl |
|
164 |
163
|
oveq2d |
|
165 |
66 161 164
|
3eqtr4d |
|