Step |
Hyp |
Ref |
Expression |
1 |
|
symgfcoeu.g |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
2 1 3
|
symginv |
|
5 |
4
|
3ad2ant2 |
|
6 |
2
|
symggrp |
|
7 |
6
|
3ad2ant1 |
|
8 |
|
simp2 |
|
9 |
1 3
|
grpinvcl |
|
10 |
7 8 9
|
syl2anc |
|
11 |
5 10
|
eqeltrrd |
|
12 |
|
simp3 |
|
13 |
|
eqid |
|
14 |
2 1 13
|
symgov |
|
15 |
2 1 13
|
symgcl |
|
16 |
14 15
|
eqeltrrd |
|
17 |
11 12 16
|
syl2anc |
|
18 |
|
coass |
|
19 |
2 1
|
symgbasf1o |
|
20 |
|
f1ococnv2 |
|
21 |
8 19 20
|
3syl |
|
22 |
21
|
coeq1d |
|
23 |
18 22
|
eqtr3id |
|
24 |
2 1
|
symgbasf1o |
|
25 |
|
f1of |
|
26 |
12 24 25
|
3syl |
|
27 |
|
fcoi2 |
|
28 |
26 27
|
syl |
|
29 |
23 28
|
eqtr2d |
|
30 |
|
simpr |
|
31 |
30
|
coeq2d |
|
32 |
|
coass |
|
33 |
|
f1ococnv1 |
|
34 |
8 19 33
|
3syl |
|
35 |
34
|
coeq1d |
|
36 |
35
|
ad2antrr |
|
37 |
32 36
|
eqtr3id |
|
38 |
|
simplr |
|
39 |
2 1
|
symgbasf1o |
|
40 |
|
f1of |
|
41 |
38 39 40
|
3syl |
|
42 |
|
fcoi2 |
|
43 |
41 42
|
syl |
|
44 |
31 37 43
|
3eqtrrd |
|
45 |
44
|
ex |
|
46 |
45
|
ralrimiva |
|
47 |
|
coeq2 |
|
48 |
47
|
eqeq2d |
|
49 |
48
|
eqreu |
|
50 |
17 29 46 49
|
syl3anc |
|