Step |
Hyp |
Ref |
Expression |
1 |
|
symgfcoeu.g |
⊢ 𝐺 = ( Base ‘ ( SymGrp ‘ 𝐷 ) ) |
2 |
|
eqid |
⊢ ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 ) |
3 |
|
eqid |
⊢ ( invg ‘ ( SymGrp ‘ 𝐷 ) ) = ( invg ‘ ( SymGrp ‘ 𝐷 ) ) |
4 |
2 1 3
|
symginv |
⊢ ( 𝑃 ∈ 𝐺 → ( ( invg ‘ ( SymGrp ‘ 𝐷 ) ) ‘ 𝑃 ) = ◡ 𝑃 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ( invg ‘ ( SymGrp ‘ 𝐷 ) ) ‘ 𝑃 ) = ◡ 𝑃 ) |
6 |
2
|
symggrp |
⊢ ( 𝐷 ∈ 𝑉 → ( SymGrp ‘ 𝐷 ) ∈ Grp ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( SymGrp ‘ 𝐷 ) ∈ Grp ) |
8 |
|
simp2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → 𝑃 ∈ 𝐺 ) |
9 |
1 3
|
grpinvcl |
⊢ ( ( ( SymGrp ‘ 𝐷 ) ∈ Grp ∧ 𝑃 ∈ 𝐺 ) → ( ( invg ‘ ( SymGrp ‘ 𝐷 ) ) ‘ 𝑃 ) ∈ 𝐺 ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ( invg ‘ ( SymGrp ‘ 𝐷 ) ) ‘ 𝑃 ) ∈ 𝐺 ) |
11 |
5 10
|
eqeltrrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ◡ 𝑃 ∈ 𝐺 ) |
12 |
|
simp3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → 𝑄 ∈ 𝐺 ) |
13 |
|
eqid |
⊢ ( +g ‘ ( SymGrp ‘ 𝐷 ) ) = ( +g ‘ ( SymGrp ‘ 𝐷 ) ) |
14 |
2 1 13
|
symgov |
⊢ ( ( ◡ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ◡ 𝑃 ( +g ‘ ( SymGrp ‘ 𝐷 ) ) 𝑄 ) = ( ◡ 𝑃 ∘ 𝑄 ) ) |
15 |
2 1 13
|
symgcl |
⊢ ( ( ◡ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ◡ 𝑃 ( +g ‘ ( SymGrp ‘ 𝐷 ) ) 𝑄 ) ∈ 𝐺 ) |
16 |
14 15
|
eqeltrrd |
⊢ ( ( ◡ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ◡ 𝑃 ∘ 𝑄 ) ∈ 𝐺 ) |
17 |
11 12 16
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ◡ 𝑃 ∘ 𝑄 ) ∈ 𝐺 ) |
18 |
|
coass |
⊢ ( ( 𝑃 ∘ ◡ 𝑃 ) ∘ 𝑄 ) = ( 𝑃 ∘ ( ◡ 𝑃 ∘ 𝑄 ) ) |
19 |
2 1
|
symgbasf1o |
⊢ ( 𝑃 ∈ 𝐺 → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
20 |
|
f1ococnv2 |
⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 → ( 𝑃 ∘ ◡ 𝑃 ) = ( I ↾ 𝐷 ) ) |
21 |
8 19 20
|
3syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( 𝑃 ∘ ◡ 𝑃 ) = ( I ↾ 𝐷 ) ) |
22 |
21
|
coeq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ( 𝑃 ∘ ◡ 𝑃 ) ∘ 𝑄 ) = ( ( I ↾ 𝐷 ) ∘ 𝑄 ) ) |
23 |
18 22
|
eqtr3id |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( 𝑃 ∘ ( ◡ 𝑃 ∘ 𝑄 ) ) = ( ( I ↾ 𝐷 ) ∘ 𝑄 ) ) |
24 |
2 1
|
symgbasf1o |
⊢ ( 𝑄 ∈ 𝐺 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
25 |
|
f1of |
⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → 𝑄 : 𝐷 ⟶ 𝐷 ) |
26 |
12 24 25
|
3syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → 𝑄 : 𝐷 ⟶ 𝐷 ) |
27 |
|
fcoi2 |
⊢ ( 𝑄 : 𝐷 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ 𝑄 ) = 𝑄 ) |
28 |
26 27
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ( I ↾ 𝐷 ) ∘ 𝑄 ) = 𝑄 ) |
29 |
23 28
|
eqtr2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → 𝑄 = ( 𝑃 ∘ ( ◡ 𝑃 ∘ 𝑄 ) ) ) |
30 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) ∧ 𝑄 = ( 𝑃 ∘ 𝑝 ) ) → 𝑄 = ( 𝑃 ∘ 𝑝 ) ) |
31 |
30
|
coeq2d |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) ∧ 𝑄 = ( 𝑃 ∘ 𝑝 ) ) → ( ◡ 𝑃 ∘ 𝑄 ) = ( ◡ 𝑃 ∘ ( 𝑃 ∘ 𝑝 ) ) ) |
32 |
|
coass |
⊢ ( ( ◡ 𝑃 ∘ 𝑃 ) ∘ 𝑝 ) = ( ◡ 𝑃 ∘ ( 𝑃 ∘ 𝑝 ) ) |
33 |
|
f1ococnv1 |
⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 → ( ◡ 𝑃 ∘ 𝑃 ) = ( I ↾ 𝐷 ) ) |
34 |
8 19 33
|
3syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ◡ 𝑃 ∘ 𝑃 ) = ( I ↾ 𝐷 ) ) |
35 |
34
|
coeq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ( ( ◡ 𝑃 ∘ 𝑃 ) ∘ 𝑝 ) = ( ( I ↾ 𝐷 ) ∘ 𝑝 ) ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) ∧ 𝑄 = ( 𝑃 ∘ 𝑝 ) ) → ( ( ◡ 𝑃 ∘ 𝑃 ) ∘ 𝑝 ) = ( ( I ↾ 𝐷 ) ∘ 𝑝 ) ) |
37 |
32 36
|
eqtr3id |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) ∧ 𝑄 = ( 𝑃 ∘ 𝑝 ) ) → ( ◡ 𝑃 ∘ ( 𝑃 ∘ 𝑝 ) ) = ( ( I ↾ 𝐷 ) ∘ 𝑝 ) ) |
38 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) ∧ 𝑄 = ( 𝑃 ∘ 𝑝 ) ) → 𝑝 ∈ 𝐺 ) |
39 |
2 1
|
symgbasf1o |
⊢ ( 𝑝 ∈ 𝐺 → 𝑝 : 𝐷 –1-1-onto→ 𝐷 ) |
40 |
|
f1of |
⊢ ( 𝑝 : 𝐷 –1-1-onto→ 𝐷 → 𝑝 : 𝐷 ⟶ 𝐷 ) |
41 |
38 39 40
|
3syl |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) ∧ 𝑄 = ( 𝑃 ∘ 𝑝 ) ) → 𝑝 : 𝐷 ⟶ 𝐷 ) |
42 |
|
fcoi2 |
⊢ ( 𝑝 : 𝐷 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ 𝑝 ) = 𝑝 ) |
43 |
41 42
|
syl |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) ∧ 𝑄 = ( 𝑃 ∘ 𝑝 ) ) → ( ( I ↾ 𝐷 ) ∘ 𝑝 ) = 𝑝 ) |
44 |
31 37 43
|
3eqtrrd |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) ∧ 𝑄 = ( 𝑃 ∘ 𝑝 ) ) → 𝑝 = ( ◡ 𝑃 ∘ 𝑄 ) ) |
45 |
44
|
ex |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) ∧ 𝑝 ∈ 𝐺 ) → ( 𝑄 = ( 𝑃 ∘ 𝑝 ) → 𝑝 = ( ◡ 𝑃 ∘ 𝑄 ) ) ) |
46 |
45
|
ralrimiva |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ∀ 𝑝 ∈ 𝐺 ( 𝑄 = ( 𝑃 ∘ 𝑝 ) → 𝑝 = ( ◡ 𝑃 ∘ 𝑄 ) ) ) |
47 |
|
coeq2 |
⊢ ( 𝑝 = ( ◡ 𝑃 ∘ 𝑄 ) → ( 𝑃 ∘ 𝑝 ) = ( 𝑃 ∘ ( ◡ 𝑃 ∘ 𝑄 ) ) ) |
48 |
47
|
eqeq2d |
⊢ ( 𝑝 = ( ◡ 𝑃 ∘ 𝑄 ) → ( 𝑄 = ( 𝑃 ∘ 𝑝 ) ↔ 𝑄 = ( 𝑃 ∘ ( ◡ 𝑃 ∘ 𝑄 ) ) ) ) |
49 |
48
|
eqreu |
⊢ ( ( ( ◡ 𝑃 ∘ 𝑄 ) ∈ 𝐺 ∧ 𝑄 = ( 𝑃 ∘ ( ◡ 𝑃 ∘ 𝑄 ) ) ∧ ∀ 𝑝 ∈ 𝐺 ( 𝑄 = ( 𝑃 ∘ 𝑝 ) → 𝑝 = ( ◡ 𝑃 ∘ 𝑄 ) ) ) → ∃! 𝑝 ∈ 𝐺 𝑄 = ( 𝑃 ∘ 𝑝 ) ) |
50 |
17 29 46 49
|
syl3anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺 ) → ∃! 𝑝 ∈ 𝐺 𝑄 = ( 𝑃 ∘ 𝑝 ) ) |