Metamath Proof Explorer


Theorem mdetlap

Description: Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B = Base A
madjusmdet.a A = 1 N Mat R
madjusmdet.d D = 1 N maDet R
madjusmdet.k K = 1 N maAdju R
madjusmdet.t · ˙ = R
madjusmdet.z Z = ℤRHom R
madjusmdet.e E = 1 N 1 maDet R
madjusmdet.n φ N
madjusmdet.r φ R CRing
madjusmdet.i φ I 1 N
madjusmdet.j φ J 1 N
madjusmdet.m φ M B
Assertion mdetlap φ D M = R j = 1 N Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j

Proof

Step Hyp Ref Expression
1 madjusmdet.b B = Base A
2 madjusmdet.a A = 1 N Mat R
3 madjusmdet.d D = 1 N maDet R
4 madjusmdet.k K = 1 N maAdju R
5 madjusmdet.t · ˙ = R
6 madjusmdet.z Z = ℤRHom R
7 madjusmdet.e E = 1 N 1 maDet R
8 madjusmdet.n φ N
9 madjusmdet.r φ R CRing
10 madjusmdet.i φ I 1 N
11 madjusmdet.j φ J 1 N
12 madjusmdet.m φ M B
13 2 1 3 4 5 mdetlap1 R CRing M B I 1 N D M = R j = 1 N I M j · ˙ j K M I
14 9 12 10 13 syl3anc φ D M = R j = 1 N I M j · ˙ j K M I
15 8 adantr φ j 1 N N
16 9 adantr φ j 1 N R CRing
17 10 adantr φ j 1 N I 1 N
18 simpr φ j 1 N j 1 N
19 12 adantr φ j 1 N M B
20 1 2 3 4 5 6 7 15 16 17 18 19 madjusmdet φ j 1 N j K M I = Z 1 I + j · ˙ E I subMat 1 M j
21 20 oveq2d φ j 1 N I M j · ˙ j K M I = I M j · ˙ Z 1 I + j · ˙ E I subMat 1 M j
22 eqid Base R = Base R
23 2 22 1 17 18 19 matecld φ j 1 N I M j Base R
24 crngring R CRing R Ring
25 6 zrhrhm R Ring Z ring RingHom R
26 zringbas = Base ring
27 26 22 rhmf Z ring RingHom R Z : Base R
28 9 24 25 27 4syl φ Z : Base R
29 28 adantr φ j 1 N Z : Base R
30 1zzd φ j 1 N 1
31 30 znegcld φ j 1 N 1
32 fz1ssnn 1 N
33 32 17 sselid φ j 1 N I
34 32 18 sselid φ j 1 N j
35 33 34 nnaddcld φ j 1 N I + j
36 35 nnnn0d φ j 1 N I + j 0
37 zexpcl 1 I + j 0 1 I + j
38 31 36 37 syl2anc φ j 1 N 1 I + j
39 29 38 ffvelcdmd φ j 1 N Z 1 I + j Base R
40 22 5 crngcom R CRing I M j Base R Z 1 I + j Base R I M j · ˙ Z 1 I + j = Z 1 I + j · ˙ I M j
41 16 23 39 40 syl3anc φ j 1 N I M j · ˙ Z 1 I + j = Z 1 I + j · ˙ I M j
42 41 oveq1d φ j 1 N I M j · ˙ Z 1 I + j · ˙ E I subMat 1 M j = Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j
43 16 24 syl φ j 1 N R Ring
44 eqid Base 1 N 1 Mat R = Base 1 N 1 Mat R
45 eqid I subMat 1 M j = I subMat 1 M j
46 2 1 44 45 15 17 18 19 smatcl φ j 1 N I subMat 1 M j Base 1 N 1 Mat R
47 eqid 1 N 1 Mat R = 1 N 1 Mat R
48 7 47 44 22 mdetcl R CRing I subMat 1 M j Base 1 N 1 Mat R E I subMat 1 M j Base R
49 16 46 48 syl2anc φ j 1 N E I subMat 1 M j Base R
50 22 5 ringass R Ring I M j Base R Z 1 I + j Base R E I subMat 1 M j Base R I M j · ˙ Z 1 I + j · ˙ E I subMat 1 M j = I M j · ˙ Z 1 I + j · ˙ E I subMat 1 M j
51 43 23 39 49 50 syl13anc φ j 1 N I M j · ˙ Z 1 I + j · ˙ E I subMat 1 M j = I M j · ˙ Z 1 I + j · ˙ E I subMat 1 M j
52 22 5 ringass R Ring Z 1 I + j Base R I M j Base R E I subMat 1 M j Base R Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j = Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j
53 43 39 23 49 52 syl13anc φ j 1 N Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j = Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j
54 42 51 53 3eqtr3d φ j 1 N I M j · ˙ Z 1 I + j · ˙ E I subMat 1 M j = Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j
55 21 54 eqtrd φ j 1 N I M j · ˙ j K M I = Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j
56 55 mpteq2dva φ j 1 N I M j · ˙ j K M I = j 1 N Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j
57 56 oveq2d φ R j = 1 N I M j · ˙ j K M I = R j = 1 N Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j
58 14 57 eqtrd φ D M = R j = 1 N Z 1 I + j · ˙ I M j · ˙ E I subMat 1 M j