| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b |  |-  B = ( Base ` A ) | 
						
							| 2 |  | madjusmdet.a |  |-  A = ( ( 1 ... N ) Mat R ) | 
						
							| 3 |  | madjusmdet.d |  |-  D = ( ( 1 ... N ) maDet R ) | 
						
							| 4 |  | madjusmdet.k |  |-  K = ( ( 1 ... N ) maAdju R ) | 
						
							| 5 |  | madjusmdet.t |  |-  .x. = ( .r ` R ) | 
						
							| 6 |  | madjusmdet.z |  |-  Z = ( ZRHom ` R ) | 
						
							| 7 |  | madjusmdet.e |  |-  E = ( ( 1 ... ( N - 1 ) ) maDet R ) | 
						
							| 8 |  | madjusmdet.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | madjusmdet.r |  |-  ( ph -> R e. CRing ) | 
						
							| 10 |  | madjusmdet.i |  |-  ( ph -> I e. ( 1 ... N ) ) | 
						
							| 11 |  | madjusmdet.j |  |-  ( ph -> J e. ( 1 ... N ) ) | 
						
							| 12 |  | madjusmdet.m |  |-  ( ph -> M e. B ) | 
						
							| 13 | 2 1 3 4 5 | mdetlap1 |  |-  ( ( R e. CRing /\ M e. B /\ I e. ( 1 ... N ) ) -> ( D ` M ) = ( R gsum ( j e. ( 1 ... N ) |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) ) | 
						
							| 14 | 9 12 10 13 | syl3anc |  |-  ( ph -> ( D ` M ) = ( R gsum ( j e. ( 1 ... N ) |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) ) | 
						
							| 15 | 8 | adantr |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> N e. NN ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> R e. CRing ) | 
						
							| 17 | 10 | adantr |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> I e. ( 1 ... N ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) | 
						
							| 19 | 12 | adantr |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> M e. B ) | 
						
							| 20 | 1 2 3 4 5 6 7 15 16 17 18 19 | madjusmdet |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( j ( K ` M ) I ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( I M j ) .x. ( j ( K ` M ) I ) ) = ( ( I M j ) .x. ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 23 | 2 22 1 17 18 19 | matecld |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( I M j ) e. ( Base ` R ) ) | 
						
							| 24 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 25 | 6 | zrhrhm |  |-  ( R e. Ring -> Z e. ( ZZring RingHom R ) ) | 
						
							| 26 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 27 | 26 22 | rhmf |  |-  ( Z e. ( ZZring RingHom R ) -> Z : ZZ --> ( Base ` R ) ) | 
						
							| 28 | 9 24 25 27 | 4syl |  |-  ( ph -> Z : ZZ --> ( Base ` R ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> Z : ZZ --> ( Base ` R ) ) | 
						
							| 30 |  | 1zzd |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> 1 e. ZZ ) | 
						
							| 31 | 30 | znegcld |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> -u 1 e. ZZ ) | 
						
							| 32 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 33 | 32 17 | sselid |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> I e. NN ) | 
						
							| 34 | 32 18 | sselid |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> j e. NN ) | 
						
							| 35 | 33 34 | nnaddcld |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( I + j ) e. NN ) | 
						
							| 36 | 35 | nnnn0d |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( I + j ) e. NN0 ) | 
						
							| 37 |  | zexpcl |  |-  ( ( -u 1 e. ZZ /\ ( I + j ) e. NN0 ) -> ( -u 1 ^ ( I + j ) ) e. ZZ ) | 
						
							| 38 | 31 36 37 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( -u 1 ^ ( I + j ) ) e. ZZ ) | 
						
							| 39 | 29 38 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( Z ` ( -u 1 ^ ( I + j ) ) ) e. ( Base ` R ) ) | 
						
							| 40 | 22 5 | crngcom |  |-  ( ( R e. CRing /\ ( I M j ) e. ( Base ` R ) /\ ( Z ` ( -u 1 ^ ( I + j ) ) ) e. ( Base ` R ) ) -> ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) ) | 
						
							| 41 | 16 23 39 40 | syl3anc |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) | 
						
							| 43 | 16 24 | syl |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> R e. Ring ) | 
						
							| 44 |  | eqid |  |-  ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) | 
						
							| 45 |  | eqid |  |-  ( I ( subMat1 ` M ) j ) = ( I ( subMat1 ` M ) j ) | 
						
							| 46 | 2 1 44 45 15 17 18 19 | smatcl |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( I ( subMat1 ` M ) j ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 47 |  | eqid |  |-  ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) | 
						
							| 48 | 7 47 44 22 | mdetcl |  |-  ( ( R e. CRing /\ ( I ( subMat1 ` M ) j ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) -> ( E ` ( I ( subMat1 ` M ) j ) ) e. ( Base ` R ) ) | 
						
							| 49 | 16 46 48 | syl2anc |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( E ` ( I ( subMat1 ` M ) j ) ) e. ( Base ` R ) ) | 
						
							| 50 | 22 5 | ringass |  |-  ( ( R e. Ring /\ ( ( I M j ) e. ( Base ` R ) /\ ( Z ` ( -u 1 ^ ( I + j ) ) ) e. ( Base ` R ) /\ ( E ` ( I ( subMat1 ` M ) j ) ) e. ( Base ` R ) ) ) -> ( ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( I M j ) .x. ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) | 
						
							| 51 | 43 23 39 49 50 | syl13anc |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( I M j ) .x. ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) | 
						
							| 52 | 22 5 | ringass |  |-  ( ( R e. Ring /\ ( ( Z ` ( -u 1 ^ ( I + j ) ) ) e. ( Base ` R ) /\ ( I M j ) e. ( Base ` R ) /\ ( E ` ( I ( subMat1 ` M ) j ) ) e. ( Base ` R ) ) ) -> ( ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) | 
						
							| 53 | 43 39 23 49 52 | syl13anc |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) | 
						
							| 54 | 42 51 53 | 3eqtr3d |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( I M j ) .x. ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) | 
						
							| 55 | 21 54 | eqtrd |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( I M j ) .x. ( j ( K ` M ) I ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) | 
						
							| 56 | 55 | mpteq2dva |  |-  ( ph -> ( j e. ( 1 ... N ) |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) = ( j e. ( 1 ... N ) |-> ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ph -> ( R gsum ( j e. ( 1 ... N ) |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) = ( R gsum ( j e. ( 1 ... N ) |-> ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) ) ) | 
						
							| 58 | 14 57 | eqtrd |  |-  ( ph -> ( D ` M ) = ( R gsum ( j e. ( 1 ... N ) |-> ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) ) ) |