Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
|- B = ( Base ` A ) |
2 |
|
madjusmdet.a |
|- A = ( ( 1 ... N ) Mat R ) |
3 |
|
madjusmdet.d |
|- D = ( ( 1 ... N ) maDet R ) |
4 |
|
madjusmdet.k |
|- K = ( ( 1 ... N ) maAdju R ) |
5 |
|
madjusmdet.t |
|- .x. = ( .r ` R ) |
6 |
|
madjusmdet.z |
|- Z = ( ZRHom ` R ) |
7 |
|
madjusmdet.e |
|- E = ( ( 1 ... ( N - 1 ) ) maDet R ) |
8 |
|
madjusmdet.n |
|- ( ph -> N e. NN ) |
9 |
|
madjusmdet.r |
|- ( ph -> R e. CRing ) |
10 |
|
madjusmdet.i |
|- ( ph -> I e. ( 1 ... N ) ) |
11 |
|
madjusmdet.j |
|- ( ph -> J e. ( 1 ... N ) ) |
12 |
|
madjusmdet.m |
|- ( ph -> M e. B ) |
13 |
2 1 3 4 5
|
mdetlap1 |
|- ( ( R e. CRing /\ M e. B /\ I e. ( 1 ... N ) ) -> ( D ` M ) = ( R gsum ( j e. ( 1 ... N ) |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) ) |
14 |
9 12 10 13
|
syl3anc |
|- ( ph -> ( D ` M ) = ( R gsum ( j e. ( 1 ... N ) |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) ) |
15 |
8
|
adantr |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> N e. NN ) |
16 |
9
|
adantr |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> R e. CRing ) |
17 |
10
|
adantr |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> I e. ( 1 ... N ) ) |
18 |
|
simpr |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) |
19 |
12
|
adantr |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> M e. B ) |
20 |
1 2 3 4 5 6 7 15 16 17 18 19
|
madjusmdet |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( j ( K ` M ) I ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) |
21 |
20
|
oveq2d |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( I M j ) .x. ( j ( K ` M ) I ) ) = ( ( I M j ) .x. ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) |
22 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
23 |
2 22 1 17 18 19
|
matecld |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( I M j ) e. ( Base ` R ) ) |
24 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
25 |
9 24
|
syl |
|- ( ph -> R e. Ring ) |
26 |
6
|
zrhrhm |
|- ( R e. Ring -> Z e. ( ZZring RingHom R ) ) |
27 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
28 |
27 22
|
rhmf |
|- ( Z e. ( ZZring RingHom R ) -> Z : ZZ --> ( Base ` R ) ) |
29 |
25 26 28
|
3syl |
|- ( ph -> Z : ZZ --> ( Base ` R ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> Z : ZZ --> ( Base ` R ) ) |
31 |
|
1zzd |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> 1 e. ZZ ) |
32 |
31
|
znegcld |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> -u 1 e. ZZ ) |
33 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
34 |
33 17
|
sselid |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> I e. NN ) |
35 |
33 18
|
sselid |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> j e. NN ) |
36 |
34 35
|
nnaddcld |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( I + j ) e. NN ) |
37 |
36
|
nnnn0d |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( I + j ) e. NN0 ) |
38 |
|
zexpcl |
|- ( ( -u 1 e. ZZ /\ ( I + j ) e. NN0 ) -> ( -u 1 ^ ( I + j ) ) e. ZZ ) |
39 |
32 37 38
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( -u 1 ^ ( I + j ) ) e. ZZ ) |
40 |
30 39
|
ffvelrnd |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( Z ` ( -u 1 ^ ( I + j ) ) ) e. ( Base ` R ) ) |
41 |
22 5
|
crngcom |
|- ( ( R e. CRing /\ ( I M j ) e. ( Base ` R ) /\ ( Z ` ( -u 1 ^ ( I + j ) ) ) e. ( Base ` R ) ) -> ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) ) |
42 |
16 23 40 41
|
syl3anc |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) ) |
43 |
42
|
oveq1d |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) |
44 |
16 24
|
syl |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> R e. Ring ) |
45 |
|
eqid |
|- ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) |
46 |
|
eqid |
|- ( I ( subMat1 ` M ) j ) = ( I ( subMat1 ` M ) j ) |
47 |
2 1 45 46 15 17 18 19
|
smatcl |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( I ( subMat1 ` M ) j ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
48 |
|
eqid |
|- ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) |
49 |
7 48 45 22
|
mdetcl |
|- ( ( R e. CRing /\ ( I ( subMat1 ` M ) j ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) -> ( E ` ( I ( subMat1 ` M ) j ) ) e. ( Base ` R ) ) |
50 |
16 47 49
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( E ` ( I ( subMat1 ` M ) j ) ) e. ( Base ` R ) ) |
51 |
22 5
|
ringass |
|- ( ( R e. Ring /\ ( ( I M j ) e. ( Base ` R ) /\ ( Z ` ( -u 1 ^ ( I + j ) ) ) e. ( Base ` R ) /\ ( E ` ( I ( subMat1 ` M ) j ) ) e. ( Base ` R ) ) ) -> ( ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( I M j ) .x. ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) |
52 |
44 23 40 50 51
|
syl13anc |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( ( I M j ) .x. ( Z ` ( -u 1 ^ ( I + j ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( I M j ) .x. ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) |
53 |
22 5
|
ringass |
|- ( ( R e. Ring /\ ( ( Z ` ( -u 1 ^ ( I + j ) ) ) e. ( Base ` R ) /\ ( I M j ) e. ( Base ` R ) /\ ( E ` ( I ( subMat1 ` M ) j ) ) e. ( Base ` R ) ) ) -> ( ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) |
54 |
44 40 23 50 53
|
syl13anc |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( I M j ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) |
55 |
43 52 54
|
3eqtr3d |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( I M j ) .x. ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) |
56 |
21 55
|
eqtrd |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( ( I M j ) .x. ( j ( K ` M ) I ) ) = ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) |
57 |
56
|
mpteq2dva |
|- ( ph -> ( j e. ( 1 ... N ) |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) = ( j e. ( 1 ... N ) |-> ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) ) |
58 |
57
|
oveq2d |
|- ( ph -> ( R gsum ( j e. ( 1 ... N ) |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) = ( R gsum ( j e. ( 1 ... N ) |-> ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) ) ) |
59 |
14 58
|
eqtrd |
|- ( ph -> ( D ` M ) = ( R gsum ( j e. ( 1 ... N ) |-> ( ( Z ` ( -u 1 ^ ( I + j ) ) ) .x. ( ( I M j ) .x. ( E ` ( I ( subMat1 ` M ) j ) ) ) ) ) ) ) |