Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
2 |
|
madjusmdet.a |
⊢ 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 ) |
3 |
|
madjusmdet.d |
⊢ 𝐷 = ( ( 1 ... 𝑁 ) maDet 𝑅 ) |
4 |
|
madjusmdet.k |
⊢ 𝐾 = ( ( 1 ... 𝑁 ) maAdju 𝑅 ) |
5 |
|
madjusmdet.t |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
madjusmdet.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
7 |
|
madjusmdet.e |
⊢ 𝐸 = ( ( 1 ... ( 𝑁 − 1 ) ) maDet 𝑅 ) |
8 |
|
madjusmdet.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
madjusmdet.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
10 |
|
madjusmdet.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
11 |
|
madjusmdet.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
12 |
|
madjusmdet.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
13 |
2 1 3 4 5
|
mdetlap1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) ) |
14 |
9 12 10 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) ) |
15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℕ ) |
16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑅 ∈ CRing ) |
17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
19 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑀 ∈ 𝐵 ) |
20 |
1 2 3 4 5 6 7 15 16 17 18 19
|
madjusmdet |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝐼 𝑀 𝑗 ) · ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
23 |
2 22 1 17 18 19
|
matecld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
24 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
25 |
9 24
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
26 |
6
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝑍 ∈ ( ℤring RingHom 𝑅 ) ) |
27 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
28 |
27 22
|
rhmf |
⊢ ( 𝑍 ∈ ( ℤring RingHom 𝑅 ) → 𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
29 |
25 26 28
|
3syl |
⊢ ( 𝜑 → 𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
31 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℤ ) |
32 |
31
|
znegcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → - 1 ∈ ℤ ) |
33 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
34 |
33 17
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐼 ∈ ℕ ) |
35 |
33 18
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ℕ ) |
36 |
34 35
|
nnaddcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 + 𝑗 ) ∈ ℕ ) |
37 |
36
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 + 𝑗 ) ∈ ℕ0 ) |
38 |
|
zexpcl |
⊢ ( ( - 1 ∈ ℤ ∧ ( 𝐼 + 𝑗 ) ∈ ℕ0 ) → ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ∈ ℤ ) |
39 |
32 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ∈ ℤ ) |
40 |
30 39
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
41 |
22 5
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) ) |
42 |
16 23 40 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) ) |
43 |
42
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) |
44 |
16 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑅 ∈ Ring ) |
45 |
|
eqid |
⊢ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) |
46 |
|
eqid |
⊢ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) = ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) |
47 |
2 1 45 46 15 17 18 19
|
smatcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) |
48 |
|
eqid |
⊢ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) = ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) |
49 |
7 48 45 22
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) → ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
50 |
16 47 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
51 |
22 5
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( 𝐼 𝑀 𝑗 ) · ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
52 |
44 23 40 50 51
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( 𝐼 𝑀 𝑗 ) · ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
53 |
22 5
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
54 |
44 40 23 50 53
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
55 |
43 52 54
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
56 |
21 55
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
57 |
56
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) ) |
59 |
14 58
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) ) |