| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madjusmdet.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 2 |
|
madjusmdet.a |
⊢ 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 ) |
| 3 |
|
madjusmdet.d |
⊢ 𝐷 = ( ( 1 ... 𝑁 ) maDet 𝑅 ) |
| 4 |
|
madjusmdet.k |
⊢ 𝐾 = ( ( 1 ... 𝑁 ) maAdju 𝑅 ) |
| 5 |
|
madjusmdet.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
madjusmdet.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
| 7 |
|
madjusmdet.e |
⊢ 𝐸 = ( ( 1 ... ( 𝑁 − 1 ) ) maDet 𝑅 ) |
| 8 |
|
madjusmdet.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 9 |
|
madjusmdet.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 10 |
|
madjusmdet.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
| 11 |
|
madjusmdet.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
| 12 |
|
madjusmdet.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 13 |
2 1 3 4 5
|
mdetlap1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) ) |
| 14 |
9 12 10 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) ) |
| 15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℕ ) |
| 16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑅 ∈ CRing ) |
| 17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
| 19 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑀 ∈ 𝐵 ) |
| 20 |
1 2 3 4 5 6 7 15 16 17 18 19
|
madjusmdet |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝐼 𝑀 𝑗 ) · ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 23 |
2 22 1 17 18 19
|
matecld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 24 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 25 |
6
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝑍 ∈ ( ℤring RingHom 𝑅 ) ) |
| 26 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 27 |
26 22
|
rhmf |
⊢ ( 𝑍 ∈ ( ℤring RingHom 𝑅 ) → 𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 28 |
9 24 25 27
|
4syl |
⊢ ( 𝜑 → 𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 30 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℤ ) |
| 31 |
30
|
znegcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → - 1 ∈ ℤ ) |
| 32 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 33 |
32 17
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐼 ∈ ℕ ) |
| 34 |
32 18
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ℕ ) |
| 35 |
33 34
|
nnaddcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 + 𝑗 ) ∈ ℕ ) |
| 36 |
35
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 + 𝑗 ) ∈ ℕ0 ) |
| 37 |
|
zexpcl |
⊢ ( ( - 1 ∈ ℤ ∧ ( 𝐼 + 𝑗 ) ∈ ℕ0 ) → ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ∈ ℤ ) |
| 38 |
31 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ∈ ℤ ) |
| 39 |
29 38
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 40 |
22 5
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) ) |
| 41 |
16 23 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) |
| 43 |
16 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 44 |
|
eqid |
⊢ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) |
| 45 |
|
eqid |
⊢ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) = ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) |
| 46 |
2 1 44 45 15 17 18 19
|
smatcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) |
| 47 |
|
eqid |
⊢ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) = ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) |
| 48 |
7 47 44 22
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) → ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 49 |
16 46 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 |
22 5
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( 𝐼 𝑀 𝑗 ) · ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
| 51 |
43 23 39 49 50
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐼 𝑀 𝑗 ) · ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( 𝐼 𝑀 𝑗 ) · ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
| 52 |
22 5
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐼 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
| 53 |
43 39 23 49 52
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐼 𝑀 𝑗 ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
| 54 |
42 51 53
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
| 55 |
21 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) |
| 56 |
55
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐼 𝑀 𝑗 ) · ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) ) |
| 58 |
14 57
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝑗 ) ) ) · ( ( 𝐼 𝑀 𝑗 ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) ) |