| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 2 |  | madjusmdet.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 3 |  | madjusmdet.d | ⊢ 𝐷  =  ( ( 1 ... 𝑁 )  maDet  𝑅 ) | 
						
							| 4 |  | madjusmdet.k | ⊢ 𝐾  =  ( ( 1 ... 𝑁 )  maAdju  𝑅 ) | 
						
							| 5 |  | madjusmdet.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | madjusmdet.z | ⊢ 𝑍  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 7 |  | madjusmdet.e | ⊢ 𝐸  =  ( ( 1 ... ( 𝑁  −  1 ) )  maDet  𝑅 ) | 
						
							| 8 |  | madjusmdet.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | madjusmdet.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | madjusmdet.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 11 |  | madjusmdet.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 12 |  | madjusmdet.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐵 ) | 
						
							| 13 | 2 1 3 4 5 | mdetlap1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝐼  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐷 ‘ 𝑀 )  =  ( 𝑅  Σg  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) ) | 
						
							| 14 | 9 12 10 13 | syl3anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑀 )  =  ( 𝑅  Σg  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) ) ) | 
						
							| 15 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 16 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑅  ∈  CRing ) | 
						
							| 17 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 19 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 20 | 1 2 3 4 5 6 7 15 16 17 18 19 | madjusmdet | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝐼 𝑀 𝑗 )  ·  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 23 | 2 22 1 17 18 19 | matecld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐼 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 24 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 25 | 6 | zrhrhm | ⊢ ( 𝑅  ∈  Ring  →  𝑍  ∈  ( ℤring  RingHom  𝑅 ) ) | 
						
							| 26 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 27 | 26 22 | rhmf | ⊢ ( 𝑍  ∈  ( ℤring  RingHom  𝑅 )  →  𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 9 24 25 27 | 4syl | ⊢ ( 𝜑  →  𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑍 : ℤ ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 30 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  1  ∈  ℤ ) | 
						
							| 31 | 30 | znegcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  - 1  ∈  ℤ ) | 
						
							| 32 |  | fz1ssnn | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 33 | 32 17 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝐼  ∈  ℕ ) | 
						
							| 34 | 32 18 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 35 | 33 34 | nnaddcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐼  +  𝑗 )  ∈  ℕ ) | 
						
							| 36 | 35 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐼  +  𝑗 )  ∈  ℕ0 ) | 
						
							| 37 |  | zexpcl | ⊢ ( ( - 1  ∈  ℤ  ∧  ( 𝐼  +  𝑗 )  ∈  ℕ0 )  →  ( - 1 ↑ ( 𝐼  +  𝑗 ) )  ∈  ℤ ) | 
						
							| 38 | 31 36 37 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( - 1 ↑ ( 𝐼  +  𝑗 ) )  ∈  ℤ ) | 
						
							| 39 | 29 38 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 40 | 22 5 | crngcom | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝐼 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) ) )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐼 𝑀 𝑗 ) ) ) | 
						
							| 41 | 16 23 39 40 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) ) )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐼 𝑀 𝑗 ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) )  =  ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐼 𝑀 𝑗 ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) | 
						
							| 43 | 16 24 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 44 |  | eqid | ⊢ ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) )  =  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) | 
						
							| 45 |  | eqid | ⊢ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 )  =  ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) | 
						
							| 46 | 2 1 44 45 15 17 18 19 | smatcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 )  =  ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) | 
						
							| 48 | 7 47 44 22 | mdetcl | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) )  →  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 49 | 16 46 48 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 50 | 22 5 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝐼 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) )  =  ( ( 𝐼 𝑀 𝑗 )  ·  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) | 
						
							| 51 | 43 23 39 49 50 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) )  =  ( ( 𝐼 𝑀 𝑗 )  ·  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) | 
						
							| 52 | 22 5 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐼 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐼 𝑀 𝑗 ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) | 
						
							| 53 | 43 39 23 49 52 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐼 𝑀 𝑗 ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) | 
						
							| 54 | 42 51 53 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐼 𝑀 𝑗 )  ·  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) | 
						
							| 55 | 21 54 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) | 
						
							| 56 | 55 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) )  =  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝑗 ( 𝐾 ‘ 𝑀 ) 𝐼 ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) ) | 
						
							| 58 | 14 57 | eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑀 )  =  ( 𝑅  Σg  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝑗 ) ) )  ·  ( ( 𝐼 𝑀 𝑗 )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝑗 ) ) ) ) ) ) ) |