| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdsl.1 |
|- A e. CH |
| 2 |
|
mdsl.2 |
|- B e. CH |
| 3 |
1 2
|
mdsl2i |
|- ( A MH B <-> A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) |
| 4 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 5 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 6 |
|
chlej2 |
|- ( ( ( ( A i^i B ) e. CH /\ A e. CH /\ x e. CH ) /\ ( A i^i B ) C_ A ) -> ( x vH ( A i^i B ) ) C_ ( x vH A ) ) |
| 7 |
5 6
|
mpan2 |
|- ( ( ( A i^i B ) e. CH /\ A e. CH /\ x e. CH ) -> ( x vH ( A i^i B ) ) C_ ( x vH A ) ) |
| 8 |
4 1 7
|
mp3an12 |
|- ( x e. CH -> ( x vH ( A i^i B ) ) C_ ( x vH A ) ) |
| 9 |
8
|
adantr |
|- ( ( x e. CH /\ x C_ B ) -> ( x vH ( A i^i B ) ) C_ ( x vH A ) ) |
| 10 |
|
simpr |
|- ( ( x e. CH /\ x C_ B ) -> x C_ B ) |
| 11 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 12 |
10 11
|
jctir |
|- ( ( x e. CH /\ x C_ B ) -> ( x C_ B /\ ( A i^i B ) C_ B ) ) |
| 13 |
|
chlub |
|- ( ( x e. CH /\ ( A i^i B ) e. CH /\ B e. CH ) -> ( ( x C_ B /\ ( A i^i B ) C_ B ) <-> ( x vH ( A i^i B ) ) C_ B ) ) |
| 14 |
4 2 13
|
mp3an23 |
|- ( x e. CH -> ( ( x C_ B /\ ( A i^i B ) C_ B ) <-> ( x vH ( A i^i B ) ) C_ B ) ) |
| 15 |
14
|
adantr |
|- ( ( x e. CH /\ x C_ B ) -> ( ( x C_ B /\ ( A i^i B ) C_ B ) <-> ( x vH ( A i^i B ) ) C_ B ) ) |
| 16 |
12 15
|
mpbid |
|- ( ( x e. CH /\ x C_ B ) -> ( x vH ( A i^i B ) ) C_ B ) |
| 17 |
9 16
|
ssind |
|- ( ( x e. CH /\ x C_ B ) -> ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) |
| 18 |
17
|
biantrud |
|- ( ( x e. CH /\ x C_ B ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) <-> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) /\ ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) ) |
| 19 |
|
eqss |
|- ( ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) <-> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) /\ ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) |
| 20 |
18 19
|
bitr4di |
|- ( ( x e. CH /\ x C_ B ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) |
| 21 |
20
|
ex |
|- ( x e. CH -> ( x C_ B -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
| 22 |
21
|
adantld |
|- ( x e. CH -> ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
| 23 |
22
|
pm5.74d |
|- ( x e. CH -> ( ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) <-> ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
| 24 |
23
|
ralbiia |
|- ( A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) <-> A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) |
| 25 |
3 24
|
bitri |
|- ( A MH B <-> A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) |