| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdsl.1 |  |-  A e. CH | 
						
							| 2 |  | mdsl.2 |  |-  B e. CH | 
						
							| 3 | 1 2 | mdsl2i |  |-  ( A MH B <-> A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) | 
						
							| 4 | 1 2 | chincli |  |-  ( A i^i B ) e. CH | 
						
							| 5 |  | inss1 |  |-  ( A i^i B ) C_ A | 
						
							| 6 |  | chlej2 |  |-  ( ( ( ( A i^i B ) e. CH /\ A e. CH /\ x e. CH ) /\ ( A i^i B ) C_ A ) -> ( x vH ( A i^i B ) ) C_ ( x vH A ) ) | 
						
							| 7 | 5 6 | mpan2 |  |-  ( ( ( A i^i B ) e. CH /\ A e. CH /\ x e. CH ) -> ( x vH ( A i^i B ) ) C_ ( x vH A ) ) | 
						
							| 8 | 4 1 7 | mp3an12 |  |-  ( x e. CH -> ( x vH ( A i^i B ) ) C_ ( x vH A ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( x e. CH /\ x C_ B ) -> ( x vH ( A i^i B ) ) C_ ( x vH A ) ) | 
						
							| 10 |  | simpr |  |-  ( ( x e. CH /\ x C_ B ) -> x C_ B ) | 
						
							| 11 |  | inss2 |  |-  ( A i^i B ) C_ B | 
						
							| 12 | 10 11 | jctir |  |-  ( ( x e. CH /\ x C_ B ) -> ( x C_ B /\ ( A i^i B ) C_ B ) ) | 
						
							| 13 |  | chlub |  |-  ( ( x e. CH /\ ( A i^i B ) e. CH /\ B e. CH ) -> ( ( x C_ B /\ ( A i^i B ) C_ B ) <-> ( x vH ( A i^i B ) ) C_ B ) ) | 
						
							| 14 | 4 2 13 | mp3an23 |  |-  ( x e. CH -> ( ( x C_ B /\ ( A i^i B ) C_ B ) <-> ( x vH ( A i^i B ) ) C_ B ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( x e. CH /\ x C_ B ) -> ( ( x C_ B /\ ( A i^i B ) C_ B ) <-> ( x vH ( A i^i B ) ) C_ B ) ) | 
						
							| 16 | 12 15 | mpbid |  |-  ( ( x e. CH /\ x C_ B ) -> ( x vH ( A i^i B ) ) C_ B ) | 
						
							| 17 | 9 16 | ssind |  |-  ( ( x e. CH /\ x C_ B ) -> ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) | 
						
							| 18 | 17 | biantrud |  |-  ( ( x e. CH /\ x C_ B ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) <-> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) /\ ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) ) | 
						
							| 19 |  | eqss |  |-  ( ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) <-> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) /\ ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) | 
						
							| 20 | 18 19 | bitr4di |  |-  ( ( x e. CH /\ x C_ B ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) | 
						
							| 21 | 20 | ex |  |-  ( x e. CH -> ( x C_ B -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) | 
						
							| 22 | 21 | adantld |  |-  ( x e. CH -> ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) | 
						
							| 23 | 22 | pm5.74d |  |-  ( x e. CH -> ( ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) <-> ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) | 
						
							| 24 | 23 | ralbiia |  |-  ( A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) <-> A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) | 
						
							| 25 | 3 24 | bitri |  |-  ( A MH B <-> A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) |