Metamath Proof Explorer


Theorem mdsl2bi

Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of MaedaMaeda p. 2. (Contributed by NM, 24-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdsl.1 AC
mdsl.2 BC
Assertion mdsl2bi A𝑀BxCABxxBxAB=xAB

Proof

Step Hyp Ref Expression
1 mdsl.1 AC
2 mdsl.2 BC
3 1 2 mdsl2i A𝑀BxCABxxBxABxAB
4 1 2 chincli ABC
5 inss1 ABA
6 chlej2 ABCACxCABAxABxA
7 5 6 mpan2 ABCACxCxABxA
8 4 1 7 mp3an12 xCxABxA
9 8 adantr xCxBxABxA
10 simpr xCxBxB
11 inss2 ABB
12 10 11 jctir xCxBxBABB
13 chlub xCABCBCxBABBxABB
14 4 2 13 mp3an23 xCxBABBxABB
15 14 adantr xCxBxBABBxABB
16 12 15 mpbid xCxBxABB
17 9 16 ssind xCxBxABxAB
18 17 biantrud xCxBxABxABxABxABxABxAB
19 eqss xAB=xABxABxABxABxAB
20 18 19 bitr4di xCxBxABxABxAB=xAB
21 20 ex xCxBxABxABxAB=xAB
22 21 adantld xCABxxBxABxABxAB=xAB
23 22 pm5.74d xCABxxBxABxABABxxBxAB=xAB
24 23 ralbiia xCABxxBxABxABxCABxxBxAB=xAB
25 3 24 bitri A𝑀BxCABxxBxAB=xAB