Metamath Proof Explorer


Theorem mdsl2bi

Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of MaedaMaeda p. 2. (Contributed by NM, 24-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdsl.1 A C
mdsl.2 B C
Assertion mdsl2bi A 𝑀 B x C A B x x B x A B = x A B

Proof

Step Hyp Ref Expression
1 mdsl.1 A C
2 mdsl.2 B C
3 1 2 mdsl2i A 𝑀 B x C A B x x B x A B x A B
4 1 2 chincli A B C
5 inss1 A B A
6 chlej2 A B C A C x C A B A x A B x A
7 5 6 mpan2 A B C A C x C x A B x A
8 4 1 7 mp3an12 x C x A B x A
9 8 adantr x C x B x A B x A
10 simpr x C x B x B
11 inss2 A B B
12 10 11 jctir x C x B x B A B B
13 chlub x C A B C B C x B A B B x A B B
14 4 2 13 mp3an23 x C x B A B B x A B B
15 14 adantr x C x B x B A B B x A B B
16 12 15 mpbid x C x B x A B B
17 9 16 ssind x C x B x A B x A B
18 17 biantrud x C x B x A B x A B x A B x A B x A B x A B
19 eqss x A B = x A B x A B x A B x A B x A B
20 18 19 bitr4di x C x B x A B x A B x A B = x A B
21 20 ex x C x B x A B x A B x A B = x A B
22 21 adantld x C A B x x B x A B x A B x A B = x A B
23 22 pm5.74d x C A B x x B x A B x A B A B x x B x A B = x A B
24 23 ralbiia x C A B x x B x A B x A B x C A B x x B x A B = x A B
25 3 24 bitri A 𝑀 B x C A B x x B x A B = x A B