Metamath Proof Explorer


Theorem mhplss

Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhplss.h
|- H = ( I mHomP R )
mhplss.p
|- P = ( I mPoly R )
mhplss.i
|- ( ph -> I e. V )
mhplss.r
|- ( ph -> R e. Ring )
mhplss.n
|- ( ph -> N e. NN0 )
Assertion mhplss
|- ( ph -> ( H ` N ) e. ( LSubSp ` P ) )

Proof

Step Hyp Ref Expression
1 mhplss.h
 |-  H = ( I mHomP R )
2 mhplss.p
 |-  P = ( I mPoly R )
3 mhplss.i
 |-  ( ph -> I e. V )
4 mhplss.r
 |-  ( ph -> R e. Ring )
5 mhplss.n
 |-  ( ph -> N e. NN0 )
6 4 ringgrpd
 |-  ( ph -> R e. Grp )
7 1 2 3 6 5 mhpsubg
 |-  ( ph -> ( H ` N ) e. ( SubGrp ` P ) )
8 eqid
 |-  ( .s ` P ) = ( .s ` P )
9 eqid
 |-  ( Base ` R ) = ( Base ` R )
10 4 adantr
 |-  ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> R e. Ring )
11 2 3 4 mplsca
 |-  ( ph -> R = ( Scalar ` P ) )
12 11 fveq2d
 |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) )
13 12 eqimsscd
 |-  ( ph -> ( Base ` ( Scalar ` P ) ) C_ ( Base ` R ) )
14 13 sselda
 |-  ( ( ph /\ a e. ( Base ` ( Scalar ` P ) ) ) -> a e. ( Base ` R ) )
15 14 adantrr
 |-  ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> a e. ( Base ` R ) )
16 simprr
 |-  ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> b e. ( H ` N ) )
17 1 2 8 9 10 15 16 mhpvscacl
 |-  ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> ( a ( .s ` P ) b ) e. ( H ` N ) )
18 17 ralrimivva
 |-  ( ph -> A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) )
19 2 3 4 mpllmodd
 |-  ( ph -> P e. LMod )
20 eqid
 |-  ( Scalar ` P ) = ( Scalar ` P )
21 eqid
 |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) )
22 eqid
 |-  ( Base ` P ) = ( Base ` P )
23 eqid
 |-  ( LSubSp ` P ) = ( LSubSp ` P )
24 20 21 22 8 23 islss4
 |-  ( P e. LMod -> ( ( H ` N ) e. ( LSubSp ` P ) <-> ( ( H ` N ) e. ( SubGrp ` P ) /\ A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) ) ) )
25 19 24 syl
 |-  ( ph -> ( ( H ` N ) e. ( LSubSp ` P ) <-> ( ( H ` N ) e. ( SubGrp ` P ) /\ A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) ) ) )
26 7 18 25 mpbir2and
 |-  ( ph -> ( H ` N ) e. ( LSubSp ` P ) )