| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhplss.h |  |-  H = ( I mHomP R ) | 
						
							| 2 |  | mhplss.p |  |-  P = ( I mPoly R ) | 
						
							| 3 |  | mhplss.i |  |-  ( ph -> I e. V ) | 
						
							| 4 |  | mhplss.r |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | mhplss.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 6 | 4 | ringgrpd |  |-  ( ph -> R e. Grp ) | 
						
							| 7 | 1 2 3 6 5 | mhpsubg |  |-  ( ph -> ( H ` N ) e. ( SubGrp ` P ) ) | 
						
							| 8 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 9 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 10 | 4 | adantr |  |-  ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> R e. Ring ) | 
						
							| 11 | 2 3 4 | mplsca |  |-  ( ph -> R = ( Scalar ` P ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 13 | 12 | eqimsscd |  |-  ( ph -> ( Base ` ( Scalar ` P ) ) C_ ( Base ` R ) ) | 
						
							| 14 | 13 | sselda |  |-  ( ( ph /\ a e. ( Base ` ( Scalar ` P ) ) ) -> a e. ( Base ` R ) ) | 
						
							| 15 | 14 | adantrr |  |-  ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> a e. ( Base ` R ) ) | 
						
							| 16 |  | simprr |  |-  ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> b e. ( H ` N ) ) | 
						
							| 17 | 1 2 8 9 10 15 16 | mhpvscacl |  |-  ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> ( a ( .s ` P ) b ) e. ( H ` N ) ) | 
						
							| 18 | 17 | ralrimivva |  |-  ( ph -> A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) ) | 
						
							| 19 | 2 3 4 | mpllmodd |  |-  ( ph -> P e. LMod ) | 
						
							| 20 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 21 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 23 |  | eqid |  |-  ( LSubSp ` P ) = ( LSubSp ` P ) | 
						
							| 24 | 20 21 22 8 23 | islss4 |  |-  ( P e. LMod -> ( ( H ` N ) e. ( LSubSp ` P ) <-> ( ( H ` N ) e. ( SubGrp ` P ) /\ A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) ) ) ) | 
						
							| 25 | 19 24 | syl |  |-  ( ph -> ( ( H ` N ) e. ( LSubSp ` P ) <-> ( ( H ` N ) e. ( SubGrp ` P ) /\ A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) ) ) ) | 
						
							| 26 | 7 18 25 | mpbir2and |  |-  ( ph -> ( H ` N ) e. ( LSubSp ` P ) ) |