Metamath Proof Explorer


Theorem mhplss

Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhplss.h H = I mHomP R
mhplss.p P = I mPoly R
mhplss.i φ I V
mhplss.r φ R Ring
mhplss.n φ N 0
Assertion mhplss φ H N LSubSp P

Proof

Step Hyp Ref Expression
1 mhplss.h H = I mHomP R
2 mhplss.p P = I mPoly R
3 mhplss.i φ I V
4 mhplss.r φ R Ring
5 mhplss.n φ N 0
6 4 ringgrpd φ R Grp
7 1 2 3 6 5 mhpsubg φ H N SubGrp P
8 eqid P = P
9 eqid Base R = Base R
10 4 adantr φ a Base Scalar P b H N R Ring
11 2 3 4 mplsca φ R = Scalar P
12 11 fveq2d φ Base R = Base Scalar P
13 12 eqimsscd φ Base Scalar P Base R
14 13 sselda φ a Base Scalar P a Base R
15 14 adantrr φ a Base Scalar P b H N a Base R
16 simprr φ a Base Scalar P b H N b H N
17 1 2 8 9 10 15 16 mhpvscacl φ a Base Scalar P b H N a P b H N
18 17 ralrimivva φ a Base Scalar P b H N a P b H N
19 2 3 4 mpllmodd φ P LMod
20 eqid Scalar P = Scalar P
21 eqid Base Scalar P = Base Scalar P
22 eqid Base P = Base P
23 eqid LSubSp P = LSubSp P
24 20 21 22 8 23 islss4 P LMod H N LSubSp P H N SubGrp P a Base Scalar P b H N a P b H N
25 19 24 syl φ H N LSubSp P H N SubGrp P a Base Scalar P b H N a P b H N
26 7 18 25 mpbir2and φ H N LSubSp P