Step |
Hyp |
Ref |
Expression |
1 |
|
mhplss.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhplss.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhplss.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
mhplss.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mhplss.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
8 |
1 2 3 7 5
|
mhpsubg |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → 𝐼 ∈ 𝑉 ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → 𝑅 ∈ Ring ) |
13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
14 |
2 3 4
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
17 |
16
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
18 |
17
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) |
20 |
1 2 9 10 11 12 13 18 19
|
mhpvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( 𝐻 ‘ 𝑁 ) ) |
21 |
20
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( 𝐻 ‘ 𝑁 ) ) |
22 |
2
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
23 |
3 4 22
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
24 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
25 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
27 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
28 |
24 25 26 9 27
|
islss4 |
⊢ ( 𝑃 ∈ LMod → ( ( 𝐻 ‘ 𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐻 ‘ 𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( 𝐻 ‘ 𝑁 ) ) ) ) |
29 |
23 28
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐻 ‘ 𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( 𝐻 ‘ 𝑁 ) ) ) ) |
30 |
8 21 29
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ) |