| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhplss.h | ⊢ 𝐻  =  ( 𝐼  mHomP  𝑅 ) | 
						
							| 2 |  | mhplss.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 3 |  | mhplss.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 4 |  | mhplss.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | mhplss.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 | 4 | ringgrpd | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 7 | 1 2 3 6 5 | mhpsubg | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑁 )  ∈  ( SubGrp ‘ 𝑃 ) ) | 
						
							| 8 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 10 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  ( 𝐻 ‘ 𝑁 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 11 | 2 3 4 | mplsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 13 | 12 | eqimsscd | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 13 | sselda | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 15 | 14 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  ( 𝐻 ‘ 𝑁 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 16 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  ( 𝐻 ‘ 𝑁 ) ) )  →  𝑏  ∈  ( 𝐻 ‘ 𝑁 ) ) | 
						
							| 17 | 1 2 8 9 10 15 16 | mhpvscacl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  ( 𝐻 ‘ 𝑁 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  ( 𝐻 ‘ 𝑁 ) ) | 
						
							| 18 | 17 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏  ∈  ( 𝐻 ‘ 𝑁 ) ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  ( 𝐻 ‘ 𝑁 ) ) | 
						
							| 19 | 2 3 4 | mpllmodd | ⊢ ( 𝜑  →  𝑃  ∈  LMod ) | 
						
							| 20 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 23 |  | eqid | ⊢ ( LSubSp ‘ 𝑃 )  =  ( LSubSp ‘ 𝑃 ) | 
						
							| 24 | 20 21 22 8 23 | islss4 | ⊢ ( 𝑃  ∈  LMod  →  ( ( 𝐻 ‘ 𝑁 )  ∈  ( LSubSp ‘ 𝑃 )  ↔  ( ( 𝐻 ‘ 𝑁 )  ∈  ( SubGrp ‘ 𝑃 )  ∧  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏  ∈  ( 𝐻 ‘ 𝑁 ) ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  ( 𝐻 ‘ 𝑁 ) ) ) ) | 
						
							| 25 | 19 24 | syl | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝑁 )  ∈  ( LSubSp ‘ 𝑃 )  ↔  ( ( 𝐻 ‘ 𝑁 )  ∈  ( SubGrp ‘ 𝑃 )  ∧  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏  ∈  ( 𝐻 ‘ 𝑁 ) ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  ( 𝐻 ‘ 𝑁 ) ) ) ) | 
						
							| 26 | 7 18 25 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑁 )  ∈  ( LSubSp ‘ 𝑃 ) ) |