Metamath Proof Explorer


Theorem mhplss

Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhplss.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhplss.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhplss.i ( 𝜑𝐼𝑉 )
mhplss.r ( 𝜑𝑅 ∈ Ring )
mhplss.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion mhplss ( 𝜑 → ( 𝐻𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 mhplss.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhplss.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhplss.i ( 𝜑𝐼𝑉 )
4 mhplss.r ( 𝜑𝑅 ∈ Ring )
5 mhplss.n ( 𝜑𝑁 ∈ ℕ0 )
6 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
7 4 6 syl ( 𝜑𝑅 ∈ Grp )
8 1 2 3 7 5 mhpsubg ( 𝜑 → ( 𝐻𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) )
9 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 3 adantr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝐼𝑉 )
12 4 adantr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝑅 ∈ Ring )
13 5 adantr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝑁 ∈ ℕ0 )
14 2 3 4 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑃 ) )
15 14 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
16 15 eleq2d ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) )
17 16 biimpar ( ( 𝜑𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) )
18 17 adantrr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) )
19 simprr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝑏 ∈ ( 𝐻𝑁 ) )
20 1 2 9 10 11 12 13 18 19 mhpvscacl ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → ( 𝑎 ( ·𝑠𝑃 ) 𝑏 ) ∈ ( 𝐻𝑁 ) )
21 20 ralrimivva ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻𝑁 ) ( 𝑎 ( ·𝑠𝑃 ) 𝑏 ) ∈ ( 𝐻𝑁 ) )
22 2 mpllmod ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑃 ∈ LMod )
23 3 4 22 syl2anc ( 𝜑𝑃 ∈ LMod )
24 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
25 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
26 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
27 eqid ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 )
28 24 25 26 9 27 islss4 ( 𝑃 ∈ LMod → ( ( 𝐻𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐻𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻𝑁 ) ( 𝑎 ( ·𝑠𝑃 ) 𝑏 ) ∈ ( 𝐻𝑁 ) ) ) )
29 23 28 syl ( 𝜑 → ( ( 𝐻𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐻𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻𝑁 ) ( 𝑎 ( ·𝑠𝑃 ) 𝑏 ) ∈ ( 𝐻𝑁 ) ) ) )
30 8 21 29 mpbir2and ( 𝜑 → ( 𝐻𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) )