| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhpvscacl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
| 2 |
|
mhpvscacl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 3 |
|
mhpvscacl.t |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 4 |
|
mhpvscacl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 5 |
|
mhpvscacl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
mhpvscacl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 7 |
|
mhpvscacl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐻 ‘ 𝑁 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 11 |
1 7
|
mhprcl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 12 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 14 |
|
reldmmhp |
⊢ Rel dom mHomP |
| 15 |
14 1 7
|
elfvov1 |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 16 |
2 15 5
|
mpllmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 17 |
6 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 18 |
2 15 5
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 20 |
17 19
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 21 |
1 2 8 7
|
mhpmpl |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
| 22 |
8 12 3 13 16 20 21
|
lmodvscld |
⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
| 23 |
2 4 8 10 22
|
mplelf |
⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 24 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → 𝑋 ∈ 𝐾 ) |
| 26 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
| 27 |
|
eldifi |
⊢ ( 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) → 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 29 |
2 3 4 8 24 10 25 26 28
|
mplvscaval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑋 · 𝐹 ) ‘ 𝑘 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 30 |
2 4 8 10 21
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 31 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) |
| 32 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
| 33 |
30 31 7 32
|
suppssrg |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑘 ) ) = ( 𝑋 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 35 |
4 24 9 5 6
|
ringrzd |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 37 |
29 34 36
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑋 · 𝐹 ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 38 |
23 37
|
suppss |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐹 ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) |
| 39 |
1 9 10 7
|
mhpdeg |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
| 40 |
38 39
|
sstrd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐹 ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
| 41 |
1 2 8 9 10 11 22 40
|
ismhp2 |
⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) ∈ ( 𝐻 ‘ 𝑁 ) ) |