Step |
Hyp |
Ref |
Expression |
1 |
|
mplvsca.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplvsca.n |
⊢ ∙ = ( ·𝑠 ‘ 𝑃 ) |
3 |
|
mplvsca.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
mplvsca.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
mplvsca.m |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
mplvsca.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
7 |
|
mplvsca.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
8 |
|
mplvsca.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
mplvscaval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
10 |
1 2 3 4 5 6 7 8
|
mplvsca |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐹 ) ‘ 𝑌 ) = ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) ) |
12 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
13 |
6 12
|
rabex2 |
⊢ 𝐷 ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
1 15 4 6 8
|
mplelf |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
17 |
16
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
18 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) |
19 |
14 7 17 18
|
ofc1 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐷 ) → ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹 ‘ 𝑌 ) ) ) |
20 |
9 19
|
mpdan |
⊢ ( 𝜑 → ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹 ‘ 𝑌 ) ) ) |
21 |
11 20
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹 ‘ 𝑌 ) ) ) |