| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhpvscacl.h |  |-  H = ( I mHomP R ) | 
						
							| 2 |  | mhpvscacl.p |  |-  P = ( I mPoly R ) | 
						
							| 3 |  | mhpvscacl.t |  |-  .x. = ( .s ` P ) | 
						
							| 4 |  | mhpvscacl.k |  |-  K = ( Base ` R ) | 
						
							| 5 |  | mhpvscacl.r |  |-  ( ph -> R e. Ring ) | 
						
							| 6 |  | mhpvscacl.x |  |-  ( ph -> X e. K ) | 
						
							| 7 |  | mhpvscacl.f |  |-  ( ph -> F e. ( H ` N ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 10 |  | eqid |  |-  { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 11 | 1 7 | mhprcl |  |-  ( ph -> N e. NN0 ) | 
						
							| 12 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 14 |  | reldmmhp |  |-  Rel dom mHomP | 
						
							| 15 | 14 1 7 | elfvov1 |  |-  ( ph -> I e. _V ) | 
						
							| 16 | 2 15 5 | mpllmodd |  |-  ( ph -> P e. LMod ) | 
						
							| 17 | 6 4 | eleqtrdi |  |-  ( ph -> X e. ( Base ` R ) ) | 
						
							| 18 | 2 15 5 | mplsca |  |-  ( ph -> R = ( Scalar ` P ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 20 | 17 19 | eleqtrd |  |-  ( ph -> X e. ( Base ` ( Scalar ` P ) ) ) | 
						
							| 21 | 1 2 8 7 | mhpmpl |  |-  ( ph -> F e. ( Base ` P ) ) | 
						
							| 22 | 8 12 3 13 16 20 21 | lmodvscld |  |-  ( ph -> ( X .x. F ) e. ( Base ` P ) ) | 
						
							| 23 | 2 4 8 10 22 | mplelf |  |-  ( ph -> ( X .x. F ) : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> K ) | 
						
							| 24 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 25 | 6 | adantr |  |-  ( ( ph /\ k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) ) -> X e. K ) | 
						
							| 26 | 21 | adantr |  |-  ( ( ph /\ k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) ) -> F e. ( Base ` P ) ) | 
						
							| 27 |  | eldifi |  |-  ( k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) -> k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) ) -> k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) | 
						
							| 29 | 2 3 4 8 24 10 25 26 28 | mplvscaval |  |-  ( ( ph /\ k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) ) -> ( ( X .x. F ) ` k ) = ( X ( .r ` R ) ( F ` k ) ) ) | 
						
							| 30 | 2 4 8 10 21 | mplelf |  |-  ( ph -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> K ) | 
						
							| 31 |  | ssidd |  |-  ( ph -> ( F supp ( 0g ` R ) ) C_ ( F supp ( 0g ` R ) ) ) | 
						
							| 32 |  | fvexd |  |-  ( ph -> ( 0g ` R ) e. _V ) | 
						
							| 33 | 30 31 7 32 | suppssrg |  |-  ( ( ph /\ k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) ) -> ( F ` k ) = ( 0g ` R ) ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ( ph /\ k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) ) -> ( X ( .r ` R ) ( F ` k ) ) = ( X ( .r ` R ) ( 0g ` R ) ) ) | 
						
							| 35 | 4 24 9 5 6 | ringrzd |  |-  ( ph -> ( X ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) ) -> ( X ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 37 | 29 34 36 | 3eqtrd |  |-  ( ( ph /\ k e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ ( F supp ( 0g ` R ) ) ) ) -> ( ( X .x. F ) ` k ) = ( 0g ` R ) ) | 
						
							| 38 | 23 37 | suppss |  |-  ( ph -> ( ( X .x. F ) supp ( 0g ` R ) ) C_ ( F supp ( 0g ` R ) ) ) | 
						
							| 39 | 1 9 10 7 | mhpdeg |  |-  ( ph -> ( F supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) | 
						
							| 40 | 38 39 | sstrd |  |-  ( ph -> ( ( X .x. F ) supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) | 
						
							| 41 | 1 2 8 9 10 11 22 40 | ismhp2 |  |-  ( ph -> ( X .x. F ) e. ( H ` N ) ) |