| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. RR /\ M e. RR+ ) -> A e. RR ) | 
						
							| 2 |  | 1red |  |-  ( ( A e. RR /\ M e. RR+ ) -> 1 e. RR ) | 
						
							| 3 |  | simpr |  |-  ( ( A e. RR /\ M e. RR+ ) -> M e. RR+ ) | 
						
							| 4 | 1 2 3 | 3jca |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A e. RR /\ 1 e. RR /\ M e. RR+ ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( A e. RR /\ 1 e. RR /\ M e. RR+ ) ) | 
						
							| 6 |  | modaddmod |  |-  ( ( A e. RR /\ 1 e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) | 
						
							| 8 |  | modcl |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) | 
						
							| 9 |  | peano2re |  |-  ( ( A mod M ) e. RR -> ( ( A mod M ) + 1 ) e. RR ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) + 1 ) e. RR ) | 
						
							| 11 | 10 3 | jca |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) e. RR /\ M e. RR+ ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( ( A mod M ) + 1 ) e. RR /\ M e. RR+ ) ) | 
						
							| 13 |  | 0red |  |-  ( ( A e. RR /\ M e. RR+ ) -> 0 e. RR ) | 
						
							| 14 |  | modge0 |  |-  ( ( A e. RR /\ M e. RR+ ) -> 0 <_ ( A mod M ) ) | 
						
							| 15 | 8 | lep1d |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) <_ ( ( A mod M ) + 1 ) ) | 
						
							| 16 | 13 8 10 14 15 | letrd |  |-  ( ( A e. RR /\ M e. RR+ ) -> 0 <_ ( ( A mod M ) + 1 ) ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> 0 <_ ( ( A mod M ) + 1 ) ) | 
						
							| 18 |  | rpre |  |-  ( M e. RR+ -> M e. RR ) | 
						
							| 19 | 18 | adantl |  |-  ( ( A e. RR /\ M e. RR+ ) -> M e. RR ) | 
						
							| 20 | 8 2 19 | ltaddsubd |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) < M <-> ( A mod M ) < ( M - 1 ) ) ) | 
						
							| 21 | 20 | biimp3ar |  |-  ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( A mod M ) + 1 ) < M ) | 
						
							| 22 |  | modid |  |-  ( ( ( ( ( A mod M ) + 1 ) e. RR /\ M e. RR+ ) /\ ( 0 <_ ( ( A mod M ) + 1 ) /\ ( ( A mod M ) + 1 ) < M ) ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A mod M ) + 1 ) ) | 
						
							| 23 | 12 17 21 22 | syl12anc |  |-  ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A mod M ) + 1 ) ) | 
						
							| 24 | 7 23 | eqtr3d |  |-  ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( A + 1 ) mod M ) = ( ( A mod M ) + 1 ) ) |