| Step | Hyp | Ref | Expression | 
						
							| 1 |  | morex.1 |  |-  B e. _V | 
						
							| 2 |  | morex.2 |  |-  ( x = B -> ( ph <-> ps ) ) | 
						
							| 3 |  | df-rex |  |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) | 
						
							| 4 |  | exancom |  |-  ( E. x ( x e. A /\ ph ) <-> E. x ( ph /\ x e. A ) ) | 
						
							| 5 | 3 4 | bitri |  |-  ( E. x e. A ph <-> E. x ( ph /\ x e. A ) ) | 
						
							| 6 |  | nfmo1 |  |-  F/ x E* x ph | 
						
							| 7 |  | nfe1 |  |-  F/ x E. x ( ph /\ x e. A ) | 
						
							| 8 | 6 7 | nfan |  |-  F/ x ( E* x ph /\ E. x ( ph /\ x e. A ) ) | 
						
							| 9 |  | mopick |  |-  ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> ( ph -> x e. A ) ) | 
						
							| 10 | 8 9 | alrimi |  |-  ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> A. x ( ph -> x e. A ) ) | 
						
							| 11 |  | eleq1 |  |-  ( x = B -> ( x e. A <-> B e. A ) ) | 
						
							| 12 | 2 11 | imbi12d |  |-  ( x = B -> ( ( ph -> x e. A ) <-> ( ps -> B e. A ) ) ) | 
						
							| 13 | 1 12 | spcv |  |-  ( A. x ( ph -> x e. A ) -> ( ps -> B e. A ) ) | 
						
							| 14 | 10 13 | syl |  |-  ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> ( ps -> B e. A ) ) | 
						
							| 15 | 5 14 | sylan2b |  |-  ( ( E* x ph /\ E. x e. A ph ) -> ( ps -> B e. A ) ) | 
						
							| 16 | 15 | ancoms |  |-  ( ( E. x e. A ph /\ E* x ph ) -> ( ps -> B e. A ) ) |