Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
remulcl |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 x. A ) e. RR ) |
3 |
1 2
|
mpan |
|- ( A e. RR -> ( 0 x. A ) e. RR ) |
4 |
|
ax-rrecex |
|- ( ( ( 0 x. A ) e. RR /\ ( 0 x. A ) =/= 0 ) -> E. y e. RR ( ( 0 x. A ) x. y ) = 1 ) |
5 |
3 4
|
sylan |
|- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> E. y e. RR ( ( 0 x. A ) x. y ) = 1 ) |
6 |
5
|
adantr |
|- ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) -> E. y e. RR ( ( 0 x. A ) x. y ) = 1 ) |
7 |
|
00id |
|- ( 0 + 0 ) = 0 |
8 |
7
|
oveq2i |
|- ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( ( ( y x. A ) x. B ) x. 0 ) |
9 |
8
|
eqcomi |
|- ( ( ( y x. A ) x. B ) x. 0 ) = ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) |
10 |
|
simprl |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> y e. RR ) |
11 |
10
|
recnd |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> y e. CC ) |
12 |
|
simplll |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> A e. RR ) |
13 |
12
|
recnd |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> A e. CC ) |
14 |
11 13
|
mulcld |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( y x. A ) e. CC ) |
15 |
|
simplr |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> B e. CC ) |
16 |
|
0cn |
|- 0 e. CC |
17 |
|
mul32 |
|- ( ( ( y x. A ) e. CC /\ B e. CC /\ 0 e. CC ) -> ( ( ( y x. A ) x. B ) x. 0 ) = ( ( ( y x. A ) x. 0 ) x. B ) ) |
18 |
16 17
|
mp3an3 |
|- ( ( ( y x. A ) e. CC /\ B e. CC ) -> ( ( ( y x. A ) x. B ) x. 0 ) = ( ( ( y x. A ) x. 0 ) x. B ) ) |
19 |
14 15 18
|
syl2anc |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. B ) x. 0 ) = ( ( ( y x. A ) x. 0 ) x. B ) ) |
20 |
|
mul31 |
|- ( ( y e. CC /\ A e. CC /\ 0 e. CC ) -> ( ( y x. A ) x. 0 ) = ( ( 0 x. A ) x. y ) ) |
21 |
16 20
|
mp3an3 |
|- ( ( y e. CC /\ A e. CC ) -> ( ( y x. A ) x. 0 ) = ( ( 0 x. A ) x. y ) ) |
22 |
11 13 21
|
syl2anc |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( y x. A ) x. 0 ) = ( ( 0 x. A ) x. y ) ) |
23 |
|
simprr |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( 0 x. A ) x. y ) = 1 ) |
24 |
22 23
|
eqtrd |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( y x. A ) x. 0 ) = 1 ) |
25 |
24
|
oveq1d |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. 0 ) x. B ) = ( 1 x. B ) ) |
26 |
|
mulid2 |
|- ( B e. CC -> ( 1 x. B ) = B ) |
27 |
26
|
ad2antlr |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( 1 x. B ) = B ) |
28 |
25 27
|
eqtrd |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. 0 ) x. B ) = B ) |
29 |
19 28
|
eqtrd |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. B ) x. 0 ) = B ) |
30 |
14 15
|
mulcld |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( y x. A ) x. B ) e. CC ) |
31 |
|
adddi |
|- ( ( ( ( y x. A ) x. B ) e. CC /\ 0 e. CC /\ 0 e. CC ) -> ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( ( ( ( y x. A ) x. B ) x. 0 ) + ( ( ( y x. A ) x. B ) x. 0 ) ) ) |
32 |
16 16 31
|
mp3an23 |
|- ( ( ( y x. A ) x. B ) e. CC -> ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( ( ( ( y x. A ) x. B ) x. 0 ) + ( ( ( y x. A ) x. B ) x. 0 ) ) ) |
33 |
30 32
|
syl |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( ( ( ( y x. A ) x. B ) x. 0 ) + ( ( ( y x. A ) x. B ) x. 0 ) ) ) |
34 |
29 29
|
oveq12d |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( ( y x. A ) x. B ) x. 0 ) + ( ( ( y x. A ) x. B ) x. 0 ) ) = ( B + B ) ) |
35 |
33 34
|
eqtrd |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( B + B ) ) |
36 |
9 29 35
|
3eqtr3a |
|- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> B = ( B + B ) ) |
37 |
6 36
|
rexlimddv |
|- ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) -> B = ( B + B ) ) |