Metamath Proof Explorer


Theorem muval1

Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion muval1
|- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( mmu ` A ) = 0 )

Proof

Step Hyp Ref Expression
1 muval
 |-  ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) )
2 1 3ad2ant1
 |-  ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) )
3 exprmfct
 |-  ( P e. ( ZZ>= ` 2 ) -> E. p e. Prime p || P )
4 3 3ad2ant2
 |-  ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> E. p e. Prime p || P )
5 prmnn
 |-  ( p e. Prime -> p e. NN )
6 simpl2
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> P e. ( ZZ>= ` 2 ) )
7 eluz2b2
 |-  ( P e. ( ZZ>= ` 2 ) <-> ( P e. NN /\ 1 < P ) )
8 6 7 sylib
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P e. NN /\ 1 < P ) )
9 8 simpld
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> P e. NN )
10 dvdssqlem
 |-  ( ( p e. NN /\ P e. NN ) -> ( p || P <-> ( p ^ 2 ) || ( P ^ 2 ) ) )
11 5 9 10 syl2an2
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p || P <-> ( p ^ 2 ) || ( P ^ 2 ) ) )
12 simpl3
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P ^ 2 ) || A )
13 prmz
 |-  ( p e. Prime -> p e. ZZ )
14 13 adantl
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> p e. ZZ )
15 zsqcl
 |-  ( p e. ZZ -> ( p ^ 2 ) e. ZZ )
16 14 15 syl
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p ^ 2 ) e. ZZ )
17 eluzelz
 |-  ( P e. ( ZZ>= ` 2 ) -> P e. ZZ )
18 zsqcl
 |-  ( P e. ZZ -> ( P ^ 2 ) e. ZZ )
19 6 17 18 3syl
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P ^ 2 ) e. ZZ )
20 simpl1
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> A e. NN )
21 20 nnzd
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> A e. ZZ )
22 dvdstr
 |-  ( ( ( p ^ 2 ) e. ZZ /\ ( P ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( ( p ^ 2 ) || ( P ^ 2 ) /\ ( P ^ 2 ) || A ) -> ( p ^ 2 ) || A ) )
23 16 19 21 22 syl3anc
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( ( ( p ^ 2 ) || ( P ^ 2 ) /\ ( P ^ 2 ) || A ) -> ( p ^ 2 ) || A ) )
24 12 23 mpan2d
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( ( p ^ 2 ) || ( P ^ 2 ) -> ( p ^ 2 ) || A ) )
25 11 24 sylbid
 |-  ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p || P -> ( p ^ 2 ) || A ) )
26 25 reximdva
 |-  ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( E. p e. Prime p || P -> E. p e. Prime ( p ^ 2 ) || A ) )
27 4 26 mpd
 |-  ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> E. p e. Prime ( p ^ 2 ) || A )
28 27 iftrued
 |-  ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 )
29 2 28 eqtrd
 |-  ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( mmu ` A ) = 0 )