| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnbusgrnn0.v |
|- V = ( Vtx ` G ) |
| 2 |
1
|
fvexi |
|- V e. _V |
| 3 |
2
|
difexi |
|- ( V \ { U } ) e. _V |
| 4 |
1
|
nbgrssovtx |
|- ( G NeighbVtx U ) C_ ( V \ { U } ) |
| 5 |
4
|
a1i |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( G NeighbVtx U ) C_ ( V \ { U } ) ) |
| 6 |
|
hashss |
|- ( ( ( V \ { U } ) e. _V /\ ( G NeighbVtx U ) C_ ( V \ { U } ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { U } ) ) ) |
| 7 |
3 5 6
|
sylancr |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { U } ) ) ) |
| 8 |
1
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> V e. Fin ) |
| 9 |
|
hashdifsn |
|- ( ( V e. Fin /\ U e. V ) -> ( # ` ( V \ { U } ) ) = ( ( # ` V ) - 1 ) ) |
| 10 |
9
|
eqcomd |
|- ( ( V e. Fin /\ U e. V ) -> ( ( # ` V ) - 1 ) = ( # ` ( V \ { U } ) ) ) |
| 11 |
8 10
|
sylan |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` V ) - 1 ) = ( # ` ( V \ { U } ) ) ) |
| 12 |
7 11
|
breqtrrd |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 1 ) ) |