| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnbusgrnn0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 3 |
2
|
difexi |
⊢ ( 𝑉 ∖ { 𝑈 } ) ∈ V |
| 4 |
1
|
nbgrssovtx |
⊢ ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑈 } ) |
| 5 |
4
|
a1i |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑈 } ) ) |
| 6 |
|
hashss |
⊢ ( ( ( 𝑉 ∖ { 𝑈 } ) ∈ V ∧ ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑈 } ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) ) |
| 7 |
3 5 6
|
sylancr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) ) |
| 8 |
1
|
fusgrvtxfi |
⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
| 9 |
|
hashdifsn |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) − 1 ) = ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) ) |
| 11 |
8 10
|
sylan |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) − 1 ) = ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) ) |
| 12 |
7 11
|
breqtrrd |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 1 ) ) |