Step |
Hyp |
Ref |
Expression |
1 |
|
nmoofval.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nmoofval.2 |
|- Y = ( BaseSet ` W ) |
3 |
|
nmoofval.3 |
|- L = ( normCV ` U ) |
4 |
|
nmoofval.4 |
|- M = ( normCV ` W ) |
5 |
|
nmoofval.6 |
|- N = ( U normOpOLD W ) |
6 |
|
fveq2 |
|- ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) |
7 |
6 1
|
eqtr4di |
|- ( u = U -> ( BaseSet ` u ) = X ) |
8 |
7
|
oveq2d |
|- ( u = U -> ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) = ( ( BaseSet ` w ) ^m X ) ) |
9 |
|
fveq2 |
|- ( u = U -> ( normCV ` u ) = ( normCV ` U ) ) |
10 |
9 3
|
eqtr4di |
|- ( u = U -> ( normCV ` u ) = L ) |
11 |
10
|
fveq1d |
|- ( u = U -> ( ( normCV ` u ) ` z ) = ( L ` z ) ) |
12 |
11
|
breq1d |
|- ( u = U -> ( ( ( normCV ` u ) ` z ) <_ 1 <-> ( L ` z ) <_ 1 ) ) |
13 |
12
|
anbi1d |
|- ( u = U -> ( ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) ) ) |
14 |
7 13
|
rexeqbidv |
|- ( u = U -> ( E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) ) ) |
15 |
14
|
abbidv |
|- ( u = U -> { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } = { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } ) |
16 |
15
|
supeq1d |
|- ( u = U -> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) |
17 |
8 16
|
mpteq12dv |
|- ( u = U -> ( t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) |-> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) = ( t e. ( ( BaseSet ` w ) ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) ) |
18 |
|
fveq2 |
|- ( w = W -> ( BaseSet ` w ) = ( BaseSet ` W ) ) |
19 |
18 2
|
eqtr4di |
|- ( w = W -> ( BaseSet ` w ) = Y ) |
20 |
19
|
oveq1d |
|- ( w = W -> ( ( BaseSet ` w ) ^m X ) = ( Y ^m X ) ) |
21 |
|
fveq2 |
|- ( w = W -> ( normCV ` w ) = ( normCV ` W ) ) |
22 |
21 4
|
eqtr4di |
|- ( w = W -> ( normCV ` w ) = M ) |
23 |
22
|
fveq1d |
|- ( w = W -> ( ( normCV ` w ) ` ( t ` z ) ) = ( M ` ( t ` z ) ) ) |
24 |
23
|
eqeq2d |
|- ( w = W -> ( x = ( ( normCV ` w ) ` ( t ` z ) ) <-> x = ( M ` ( t ` z ) ) ) ) |
25 |
24
|
anbi2d |
|- ( w = W -> ( ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) ) ) |
26 |
25
|
rexbidv |
|- ( w = W -> ( E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) ) ) |
27 |
26
|
abbidv |
|- ( w = W -> { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } = { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } ) |
28 |
27
|
supeq1d |
|- ( w = W -> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) |
29 |
20 28
|
mpteq12dv |
|- ( w = W -> ( t e. ( ( BaseSet ` w ) ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |
30 |
|
df-nmoo |
|- normOpOLD = ( u e. NrmCVec , w e. NrmCVec |-> ( t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) |-> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) ) |
31 |
|
ovex |
|- ( Y ^m X ) e. _V |
32 |
31
|
mptex |
|- ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) e. _V |
33 |
17 29 30 32
|
ovmpo |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U normOpOLD W ) = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |
34 |
5 33
|
eqtrid |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> N = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |