Step |
Hyp |
Ref |
Expression |
1 |
|
nvscl.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvscl.4 |
|- S = ( .sOLD ` U ) |
3 |
|
mulcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
4 |
3
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. X ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) |
6 |
5
|
adantl |
|- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) |
7 |
1 2
|
nvsass |
|- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) |
8 |
|
3ancoma |
|- ( ( A e. CC /\ B e. CC /\ C e. X ) <-> ( B e. CC /\ A e. CC /\ C e. X ) ) |
9 |
1 2
|
nvsass |
|- ( ( U e. NrmCVec /\ ( B e. CC /\ A e. CC /\ C e. X ) ) -> ( ( B x. A ) S C ) = ( B S ( A S C ) ) ) |
10 |
8 9
|
sylan2b |
|- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( B x. A ) S C ) = ( B S ( A S C ) ) ) |
11 |
6 7 10
|
3eqtr3d |
|- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( A S ( B S C ) ) = ( B S ( A S C ) ) ) |