| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imass2 |
|- ( A C_ B -> ( _Made " A ) C_ ( _Made " B ) ) |
| 2 |
1
|
unissd |
|- ( A C_ B -> U. ( _Made " A ) C_ U. ( _Made " B ) ) |
| 3 |
2
|
adantl |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> U. ( _Made " A ) C_ U. ( _Made " B ) ) |
| 4 |
|
oldval |
|- ( A e. On -> ( _Old ` A ) = U. ( _Made " A ) ) |
| 5 |
4
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( _Old ` A ) = U. ( _Made " A ) ) |
| 6 |
5
|
adantr |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( _Old ` A ) = U. ( _Made " A ) ) |
| 7 |
|
oldval |
|- ( B e. On -> ( _Old ` B ) = U. ( _Made " B ) ) |
| 8 |
7
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( _Old ` B ) = U. ( _Made " B ) ) |
| 9 |
8
|
adantr |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( _Old ` B ) = U. ( _Made " B ) ) |
| 10 |
3 6 9
|
3sstr4d |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) ) |
| 11 |
10
|
expl |
|- ( A e. On -> ( ( B e. On /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) ) ) |
| 12 |
|
oldf |
|- _Old : On --> ~P No |
| 13 |
12
|
fdmi |
|- dom _Old = On |
| 14 |
13
|
eleq2i |
|- ( A e. dom _Old <-> A e. On ) |
| 15 |
|
ndmfv |
|- ( -. A e. dom _Old -> ( _Old ` A ) = (/) ) |
| 16 |
14 15
|
sylnbir |
|- ( -. A e. On -> ( _Old ` A ) = (/) ) |
| 17 |
|
0ss |
|- (/) C_ ( _Old ` B ) |
| 18 |
16 17
|
eqsstrdi |
|- ( -. A e. On -> ( _Old ` A ) C_ ( _Old ` B ) ) |
| 19 |
18
|
a1d |
|- ( -. A e. On -> ( ( B e. On /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) ) ) |
| 20 |
11 19
|
pm2.61i |
|- ( ( B e. On /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) ) |