Metamath Proof Explorer


Theorem oldss

Description: If A is less than or equal to ordinal B , then the old set of A is included in the made set of B . (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion oldss
|- ( ( B e. On /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) )

Proof

Step Hyp Ref Expression
1 imass2
 |-  ( A C_ B -> ( _Made " A ) C_ ( _Made " B ) )
2 1 unissd
 |-  ( A C_ B -> U. ( _Made " A ) C_ U. ( _Made " B ) )
3 2 adantl
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> U. ( _Made " A ) C_ U. ( _Made " B ) )
4 oldval
 |-  ( A e. On -> ( _Old ` A ) = U. ( _Made " A ) )
5 4 adantr
 |-  ( ( A e. On /\ B e. On ) -> ( _Old ` A ) = U. ( _Made " A ) )
6 5 adantr
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( _Old ` A ) = U. ( _Made " A ) )
7 oldval
 |-  ( B e. On -> ( _Old ` B ) = U. ( _Made " B ) )
8 7 adantl
 |-  ( ( A e. On /\ B e. On ) -> ( _Old ` B ) = U. ( _Made " B ) )
9 8 adantr
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( _Old ` B ) = U. ( _Made " B ) )
10 3 6 9 3sstr4d
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) )
11 10 expl
 |-  ( A e. On -> ( ( B e. On /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) ) )
12 oldf
 |-  _Old : On --> ~P No
13 12 fdmi
 |-  dom _Old = On
14 13 eleq2i
 |-  ( A e. dom _Old <-> A e. On )
15 ndmfv
 |-  ( -. A e. dom _Old -> ( _Old ` A ) = (/) )
16 14 15 sylnbir
 |-  ( -. A e. On -> ( _Old ` A ) = (/) )
17 0ss
 |-  (/) C_ ( _Old ` B )
18 16 17 eqsstrdi
 |-  ( -. A e. On -> ( _Old ` A ) C_ ( _Old ` B ) )
19 18 a1d
 |-  ( -. A e. On -> ( ( B e. On /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) ) )
20 11 19 pm2.61i
 |-  ( ( B e. On /\ A C_ B ) -> ( _Old ` A ) C_ ( _Old ` B ) )