| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtri2or3 |  |-  ( ( Ord A /\ Ord B ) -> ( A = ( A i^i B ) \/ B = ( A i^i B ) ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( Ord A /\ Ord B /\ Ord C ) -> ( A = ( A i^i B ) \/ B = ( A i^i B ) ) ) | 
						
							| 3 |  | eleq1a |  |-  ( ( A i^i B ) e. C -> ( A = ( A i^i B ) -> A e. C ) ) | 
						
							| 4 |  | eleq1a |  |-  ( ( A i^i B ) e. C -> ( B = ( A i^i B ) -> B e. C ) ) | 
						
							| 5 | 3 4 | orim12d |  |-  ( ( A i^i B ) e. C -> ( ( A = ( A i^i B ) \/ B = ( A i^i B ) ) -> ( A e. C \/ B e. C ) ) ) | 
						
							| 6 | 2 5 | syl5com |  |-  ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A i^i B ) e. C -> ( A e. C \/ B e. C ) ) ) | 
						
							| 7 |  | ordin |  |-  ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) | 
						
							| 8 |  | inss1 |  |-  ( A i^i B ) C_ A | 
						
							| 9 |  | ordtr2 |  |-  ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( ( A i^i B ) C_ A /\ A e. C ) -> ( A i^i B ) e. C ) ) | 
						
							| 10 | 8 9 | mpani |  |-  ( ( Ord ( A i^i B ) /\ Ord C ) -> ( A e. C -> ( A i^i B ) e. C ) ) | 
						
							| 11 |  | inss2 |  |-  ( A i^i B ) C_ B | 
						
							| 12 |  | ordtr2 |  |-  ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( ( A i^i B ) C_ B /\ B e. C ) -> ( A i^i B ) e. C ) ) | 
						
							| 13 | 11 12 | mpani |  |-  ( ( Ord ( A i^i B ) /\ Ord C ) -> ( B e. C -> ( A i^i B ) e. C ) ) | 
						
							| 14 | 10 13 | jaod |  |-  ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( A e. C \/ B e. C ) -> ( A i^i B ) e. C ) ) | 
						
							| 15 | 7 14 | stoic3 |  |-  ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A e. C \/ B e. C ) -> ( A i^i B ) e. C ) ) | 
						
							| 16 | 6 15 | impbid |  |-  ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A i^i B ) e. C <-> ( A e. C \/ B e. C ) ) ) |