| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtri2or3 | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  =  ( 𝐴  ∩  𝐵 )  ∨  𝐵  =  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐴  =  ( 𝐴  ∩  𝐵 )  ∨  𝐵  =  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 3 |  | eleq1a | ⊢ ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  →  ( 𝐴  =  ( 𝐴  ∩  𝐵 )  →  𝐴  ∈  𝐶 ) ) | 
						
							| 4 |  | eleq1a | ⊢ ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  →  ( 𝐵  =  ( 𝐴  ∩  𝐵 )  →  𝐵  ∈  𝐶 ) ) | 
						
							| 5 | 3 4 | orim12d | ⊢ ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  →  ( ( 𝐴  =  ( 𝐴  ∩  𝐵 )  ∨  𝐵  =  ( 𝐴  ∩  𝐵 ) )  →  ( 𝐴  ∈  𝐶  ∨  𝐵  ∈  𝐶 ) ) ) | 
						
							| 6 | 2 5 | syl5com | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵  ∧  Ord  𝐶 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  →  ( 𝐴  ∈  𝐶  ∨  𝐵  ∈  𝐶 ) ) ) | 
						
							| 7 |  | ordin | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  Ord  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 8 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 9 |  | ordtr2 | ⊢ ( ( Ord  ( 𝐴  ∩  𝐵 )  ∧  Ord  𝐶 )  →  ( ( ( 𝐴  ∩  𝐵 )  ⊆  𝐴  ∧  𝐴  ∈  𝐶 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) ) | 
						
							| 10 | 8 9 | mpani | ⊢ ( ( Ord  ( 𝐴  ∩  𝐵 )  ∧  Ord  𝐶 )  →  ( 𝐴  ∈  𝐶  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) ) | 
						
							| 11 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 12 |  | ordtr2 | ⊢ ( ( Ord  ( 𝐴  ∩  𝐵 )  ∧  Ord  𝐶 )  →  ( ( ( 𝐴  ∩  𝐵 )  ⊆  𝐵  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) ) | 
						
							| 13 | 11 12 | mpani | ⊢ ( ( Ord  ( 𝐴  ∩  𝐵 )  ∧  Ord  𝐶 )  →  ( 𝐵  ∈  𝐶  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) ) | 
						
							| 14 | 10 13 | jaod | ⊢ ( ( Ord  ( 𝐴  ∩  𝐵 )  ∧  Ord  𝐶 )  →  ( ( 𝐴  ∈  𝐶  ∨  𝐵  ∈  𝐶 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) ) | 
						
							| 15 | 7 14 | stoic3 | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵  ∧  Ord  𝐶 )  →  ( ( 𝐴  ∈  𝐶  ∨  𝐵  ∈  𝐶 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) ) | 
						
							| 16 | 6 15 | impbid | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵  ∧  Ord  𝐶 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ↔  ( 𝐴  ∈  𝐶  ∨  𝐵  ∈  𝐶 ) ) ) |