Metamath Proof Explorer


Theorem ordelinel

Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017) (Proof shortened by JJ, 24-Sep-2021)

Ref Expression
Assertion ordelinel OrdAOrdBOrdCABCACBC

Proof

Step Hyp Ref Expression
1 ordtri2or3 OrdAOrdBA=ABB=AB
2 1 3adant3 OrdAOrdBOrdCA=ABB=AB
3 eleq1a ABCA=ABAC
4 eleq1a ABCB=ABBC
5 3 4 orim12d ABCA=ABB=ABACBC
6 2 5 syl5com OrdAOrdBOrdCABCACBC
7 ordin OrdAOrdBOrdAB
8 inss1 ABA
9 ordtr2 OrdABOrdCABAACABC
10 8 9 mpani OrdABOrdCACABC
11 inss2 ABB
12 ordtr2 OrdABOrdCABBBCABC
13 11 12 mpani OrdABOrdCBCABC
14 10 13 jaod OrdABOrdCACBCABC
15 7 14 stoic3 OrdAOrdBOrdCACBCABC
16 6 15 impbid OrdAOrdBOrdCABCACBC