Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017) (Proof shortened by JJ, 24-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ordelinel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or3 | |
|
2 | 1 | 3adant3 | |
3 | eleq1a | |
|
4 | eleq1a | |
|
5 | 3 4 | orim12d | |
6 | 2 5 | syl5com | |
7 | ordin | |
|
8 | inss1 | |
|
9 | ordtr2 | |
|
10 | 8 9 | mpani | |
11 | inss2 | |
|
12 | ordtr2 | |
|
13 | 11 12 | mpani | |
14 | 10 13 | jaod | |
15 | 7 14 | stoic3 | |
16 | 6 15 | impbid | |