Metamath Proof Explorer


Theorem orderseqlem

Description: Lemma for poseq and soseq . The function value of a sequene is either in A or null. (Contributed by Scott Fenton, 8-Jun-2011)

Ref Expression
Hypothesis orderseqlem.1
|- F = { f | E. x e. On f : x --> A }
Assertion orderseqlem
|- ( G e. F -> ( G ` X ) e. ( A u. { (/) } ) )

Proof

Step Hyp Ref Expression
1 orderseqlem.1
 |-  F = { f | E. x e. On f : x --> A }
2 feq1
 |-  ( f = G -> ( f : x --> A <-> G : x --> A ) )
3 2 rexbidv
 |-  ( f = G -> ( E. x e. On f : x --> A <-> E. x e. On G : x --> A ) )
4 3 1 elab2g
 |-  ( G e. F -> ( G e. F <-> E. x e. On G : x --> A ) )
5 4 ibi
 |-  ( G e. F -> E. x e. On G : x --> A )
6 frn
 |-  ( G : x --> A -> ran G C_ A )
7 unss1
 |-  ( ran G C_ A -> ( ran G u. { (/) } ) C_ ( A u. { (/) } ) )
8 6 7 syl
 |-  ( G : x --> A -> ( ran G u. { (/) } ) C_ ( A u. { (/) } ) )
9 fvrn0
 |-  ( G ` X ) e. ( ran G u. { (/) } )
10 ssel
 |-  ( ( ran G u. { (/) } ) C_ ( A u. { (/) } ) -> ( ( G ` X ) e. ( ran G u. { (/) } ) -> ( G ` X ) e. ( A u. { (/) } ) ) )
11 8 9 10 mpisyl
 |-  ( G : x --> A -> ( G ` X ) e. ( A u. { (/) } ) )
12 11 rexlimivw
 |-  ( E. x e. On G : x --> A -> ( G ` X ) e. ( A u. { (/) } ) )
13 5 12 syl
 |-  ( G e. F -> ( G ` X ) e. ( A u. { (/) } ) )