Step |
Hyp |
Ref |
Expression |
1 |
|
orderseqlem.1 |
|- F = { f | E. x e. On f : x --> A } |
2 |
|
feq1 |
|- ( f = G -> ( f : x --> A <-> G : x --> A ) ) |
3 |
2
|
rexbidv |
|- ( f = G -> ( E. x e. On f : x --> A <-> E. x e. On G : x --> A ) ) |
4 |
3 1
|
elab2g |
|- ( G e. F -> ( G e. F <-> E. x e. On G : x --> A ) ) |
5 |
4
|
ibi |
|- ( G e. F -> E. x e. On G : x --> A ) |
6 |
|
frn |
|- ( G : x --> A -> ran G C_ A ) |
7 |
|
unss1 |
|- ( ran G C_ A -> ( ran G u. { (/) } ) C_ ( A u. { (/) } ) ) |
8 |
6 7
|
syl |
|- ( G : x --> A -> ( ran G u. { (/) } ) C_ ( A u. { (/) } ) ) |
9 |
|
fvrn0 |
|- ( G ` X ) e. ( ran G u. { (/) } ) |
10 |
|
ssel |
|- ( ( ran G u. { (/) } ) C_ ( A u. { (/) } ) -> ( ( G ` X ) e. ( ran G u. { (/) } ) -> ( G ` X ) e. ( A u. { (/) } ) ) ) |
11 |
8 9 10
|
mpisyl |
|- ( G : x --> A -> ( G ` X ) e. ( A u. { (/) } ) ) |
12 |
11
|
rexlimivw |
|- ( E. x e. On G : x --> A -> ( G ` X ) e. ( A u. { (/) } ) ) |
13 |
5 12
|
syl |
|- ( G e. F -> ( G ` X ) e. ( A u. { (/) } ) ) |