| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orderseqlem.1 |
⊢ 𝐹 = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 } |
| 2 |
|
feq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 : 𝑥 ⟶ 𝐴 ↔ 𝐺 : 𝑥 ⟶ 𝐴 ) ) |
| 3 |
2
|
rexbidv |
⊢ ( 𝑓 = 𝐺 → ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 ↔ ∃ 𝑥 ∈ On 𝐺 : 𝑥 ⟶ 𝐴 ) ) |
| 4 |
3 1
|
elab2g |
⊢ ( 𝐺 ∈ 𝐹 → ( 𝐺 ∈ 𝐹 ↔ ∃ 𝑥 ∈ On 𝐺 : 𝑥 ⟶ 𝐴 ) ) |
| 5 |
4
|
ibi |
⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑥 ∈ On 𝐺 : 𝑥 ⟶ 𝐴 ) |
| 6 |
|
frn |
⊢ ( 𝐺 : 𝑥 ⟶ 𝐴 → ran 𝐺 ⊆ 𝐴 ) |
| 7 |
|
unss1 |
⊢ ( ran 𝐺 ⊆ 𝐴 → ( ran 𝐺 ∪ { ∅ } ) ⊆ ( 𝐴 ∪ { ∅ } ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐺 : 𝑥 ⟶ 𝐴 → ( ran 𝐺 ∪ { ∅ } ) ⊆ ( 𝐴 ∪ { ∅ } ) ) |
| 9 |
|
fvrn0 |
⊢ ( 𝐺 ‘ 𝑋 ) ∈ ( ran 𝐺 ∪ { ∅ } ) |
| 10 |
|
ssel |
⊢ ( ( ran 𝐺 ∪ { ∅ } ) ⊆ ( 𝐴 ∪ { ∅ } ) → ( ( 𝐺 ‘ 𝑋 ) ∈ ( ran 𝐺 ∪ { ∅ } ) → ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 11 |
8 9 10
|
mpisyl |
⊢ ( 𝐺 : 𝑥 ⟶ 𝐴 → ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 12 |
11
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On 𝐺 : 𝑥 ⟶ 𝐴 → ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 13 |
5 12
|
syl |
⊢ ( 𝐺 ∈ 𝐹 → ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |