Metamath Proof Explorer


Theorem orderseqlem

Description: Lemma for poseq and soseq . The function value of a sequene is either in A or null. (Contributed by Scott Fenton, 8-Jun-2011)

Ref Expression
Hypothesis orderseqlem.1 𝐹 = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥𝐴 }
Assertion orderseqlem ( 𝐺𝐹 → ( 𝐺𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) )

Proof

Step Hyp Ref Expression
1 orderseqlem.1 𝐹 = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥𝐴 }
2 feq1 ( 𝑓 = 𝐺 → ( 𝑓 : 𝑥𝐴𝐺 : 𝑥𝐴 ) )
3 2 rexbidv ( 𝑓 = 𝐺 → ( ∃ 𝑥 ∈ On 𝑓 : 𝑥𝐴 ↔ ∃ 𝑥 ∈ On 𝐺 : 𝑥𝐴 ) )
4 3 1 elab2g ( 𝐺𝐹 → ( 𝐺𝐹 ↔ ∃ 𝑥 ∈ On 𝐺 : 𝑥𝐴 ) )
5 4 ibi ( 𝐺𝐹 → ∃ 𝑥 ∈ On 𝐺 : 𝑥𝐴 )
6 frn ( 𝐺 : 𝑥𝐴 → ran 𝐺𝐴 )
7 unss1 ( ran 𝐺𝐴 → ( ran 𝐺 ∪ { ∅ } ) ⊆ ( 𝐴 ∪ { ∅ } ) )
8 6 7 syl ( 𝐺 : 𝑥𝐴 → ( ran 𝐺 ∪ { ∅ } ) ⊆ ( 𝐴 ∪ { ∅ } ) )
9 fvrn0 ( 𝐺𝑋 ) ∈ ( ran 𝐺 ∪ { ∅ } )
10 ssel ( ( ran 𝐺 ∪ { ∅ } ) ⊆ ( 𝐴 ∪ { ∅ } ) → ( ( 𝐺𝑋 ) ∈ ( ran 𝐺 ∪ { ∅ } ) → ( 𝐺𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) ) )
11 8 9 10 mpisyl ( 𝐺 : 𝑥𝐴 → ( 𝐺𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) )
12 11 rexlimivw ( ∃ 𝑥 ∈ On 𝐺 : 𝑥𝐴 → ( 𝐺𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) )
13 5 12 syl ( 𝐺𝐹 → ( 𝐺𝑋 ) ∈ ( 𝐴 ∪ { ∅ } ) )