Step |
Hyp |
Ref |
Expression |
1 |
|
poseq.1 |
⊢ 𝑅 Po ( 𝐴 ∪ { ∅ } ) |
2 |
|
poseq.2 |
⊢ 𝐹 = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 } |
3 |
|
poseq.3 |
⊢ 𝑆 = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) } |
4 |
|
feq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝑓 : 𝑥 ⟶ 𝐴 ↔ 𝑓 : 𝑏 ⟶ 𝐴 ) ) |
5 |
4
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 ↔ ∃ 𝑏 ∈ On 𝑓 : 𝑏 ⟶ 𝐴 ) |
6 |
5
|
abbii |
⊢ { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 } = { 𝑓 ∣ ∃ 𝑏 ∈ On 𝑓 : 𝑏 ⟶ 𝐴 } |
7 |
2 6
|
eqtri |
⊢ 𝐹 = { 𝑓 ∣ ∃ 𝑏 ∈ On 𝑓 : 𝑏 ⟶ 𝐴 } |
8 |
7
|
orderseqlem |
⊢ ( 𝑎 ∈ 𝐹 → ( 𝑎 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
9 |
|
poirr |
⊢ ( ( 𝑅 Po ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑎 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ) → ¬ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) |
10 |
1 8 9
|
sylancr |
⊢ ( 𝑎 ∈ 𝐹 → ¬ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) |
11 |
10
|
intnand |
⊢ ( 𝑎 ∈ 𝐹 → ¬ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑥 ∈ On ) → ¬ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
13 |
12
|
nrexdv |
⊢ ( 𝑎 ∈ 𝐹 → ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
15 |
|
imnan |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ¬ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
16 |
14 15
|
mpbi |
⊢ ¬ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
17 |
|
vex |
⊢ 𝑎 ∈ V |
18 |
|
eleq1w |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ∈ 𝐹 ↔ 𝑎 ∈ 𝐹 ) ) |
19 |
18
|
anbi1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ) ) |
20 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑓 = 𝑎 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
23 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ) |
24 |
23
|
breq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) |
25 |
22 24
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
27 |
19 26
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
28 |
|
eleq1w |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ∈ 𝐹 ↔ 𝑎 ∈ 𝐹 ) ) |
29 |
28
|
anbi2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ) ) |
30 |
|
fveq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) |
31 |
30
|
eqeq2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) ) |
32 |
31
|
ralbidv |
⊢ ( 𝑔 = 𝑎 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) ) |
33 |
|
fveq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ) |
34 |
33
|
breq2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
35 |
32 34
|
anbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑔 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
37 |
29 36
|
anbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
38 |
17 17 27 37 3
|
brab |
⊢ ( 𝑎 𝑆 𝑎 ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
39 |
16 38
|
mtbir |
⊢ ¬ 𝑎 𝑆 𝑎 |
40 |
|
vex |
⊢ 𝑏 ∈ V |
41 |
|
raleq |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑧 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑧 ) ) |
44 |
42 43
|
breq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) |
45 |
41 44
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) |
46 |
45
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) |
47 |
21
|
ralbidv |
⊢ ( 𝑓 = 𝑎 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
48 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑧 ) = ( 𝑎 ‘ 𝑧 ) ) |
49 |
48
|
breq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) |
50 |
47 49
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) |
51 |
50
|
rexbidv |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) |
52 |
46 51
|
syl5bb |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) |
53 |
19 52
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) ) |
54 |
|
eleq1w |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ∈ 𝐹 ↔ 𝑏 ∈ 𝐹 ) ) |
55 |
54
|
anbi2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ) ) |
56 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
57 |
56
|
eqeq2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑔 = 𝑏 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
59 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑧 ) = ( 𝑏 ‘ 𝑧 ) ) |
60 |
59
|
breq2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) |
61 |
58 60
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ) |
62 |
61
|
rexbidv |
⊢ ( 𝑔 = 𝑏 → ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ) |
63 |
55 62
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ) ) |
64 |
17 40 53 63 3
|
brab |
⊢ ( 𝑎 𝑆 𝑏 ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ) |
65 |
|
vex |
⊢ 𝑐 ∈ V |
66 |
|
eleq1w |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ∈ 𝐹 ↔ 𝑏 ∈ 𝐹 ) ) |
67 |
66
|
anbi1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ) ) |
68 |
|
raleq |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
69 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑤 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑤 ) ) |
71 |
69 70
|
breq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) |
72 |
68 71
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) |
73 |
72
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) |
74 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
75 |
74
|
eqeq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
76 |
75
|
ralbidv |
⊢ ( 𝑓 = 𝑏 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
77 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) ) |
78 |
77
|
breq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ↔ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) |
79 |
76 78
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) |
80 |
79
|
rexbidv |
⊢ ( 𝑓 = 𝑏 → ( ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ↔ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) |
81 |
73 80
|
syl5bb |
⊢ ( 𝑓 = 𝑏 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) |
82 |
67 81
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) ) |
83 |
|
eleq1w |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ∈ 𝐹 ↔ 𝑐 ∈ 𝐹 ) ) |
84 |
83
|
anbi2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) |
85 |
|
fveq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
86 |
85
|
eqeq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
87 |
86
|
ralbidv |
⊢ ( 𝑔 = 𝑐 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
88 |
|
fveq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) |
89 |
88
|
breq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ↔ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
90 |
87 89
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
91 |
90
|
rexbidv |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ↔ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
92 |
84 91
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) ) |
93 |
40 65 82 92 3
|
brab |
⊢ ( 𝑏 𝑆 𝑐 ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
94 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ∧ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → 𝑎 ∈ 𝐹 ) |
95 |
|
simplrr |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ∧ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → 𝑐 ∈ 𝐹 ) |
96 |
|
an4 |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ↔ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
97 |
96
|
2rexbii |
⊢ ( ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
98 |
|
reeanv |
⊢ ( ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
99 |
97 98
|
bitri |
⊢ ( ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
100 |
|
eloni |
⊢ ( 𝑧 ∈ On → Ord 𝑧 ) |
101 |
|
eloni |
⊢ ( 𝑤 ∈ On → Ord 𝑤 ) |
102 |
|
ordtri3or |
⊢ ( ( Ord 𝑧 ∧ Ord 𝑤 ) → ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) |
103 |
100 101 102
|
syl2an |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) |
104 |
|
simp1l |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → 𝑧 ∈ On ) |
105 |
|
onelss |
⊢ ( 𝑤 ∈ On → ( 𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤 ) ) |
106 |
105
|
imp |
⊢ ( ( 𝑤 ∈ On ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ⊆ 𝑤 ) |
107 |
106
|
adantll |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ⊆ 𝑤 ) |
108 |
|
ssralv |
⊢ ( 𝑧 ⊆ 𝑤 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
109 |
108
|
anim2d |
⊢ ( 𝑧 ⊆ 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
110 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
111 |
109 110
|
syl6ibr |
⊢ ( 𝑧 ⊆ 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
112 |
|
eqtr |
⊢ ( ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
113 |
112
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
114 |
111 113
|
syl6 |
⊢ ( 𝑧 ⊆ 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
115 |
107 114
|
syl |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ) → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
116 |
115
|
adantrd |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ) → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
117 |
116
|
3impia |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
118 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑧 ) ) |
119 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑐 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑧 ) ) |
120 |
118 119
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) ) ) |
121 |
120
|
rspcv |
⊢ ( 𝑧 ∈ 𝑤 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) → ( 𝑏 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) ) ) |
122 |
|
breq2 |
⊢ ( ( 𝑏 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ↔ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
123 |
122
|
biimpd |
⊢ ( ( 𝑏 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
124 |
121 123
|
syl6 |
⊢ ( 𝑧 ∈ 𝑤 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ) |
125 |
124
|
com3l |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) → ( 𝑧 ∈ 𝑤 → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ) |
126 |
125
|
imp |
⊢ ( ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) → ( 𝑧 ∈ 𝑤 → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
127 |
126
|
ad2ant2lr |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( 𝑧 ∈ 𝑤 → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
128 |
127
|
impcom |
⊢ ( ( 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) |
129 |
128
|
3adant1 |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) |
130 |
|
raleq |
⊢ ( 𝑡 = 𝑧 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
131 |
|
fveq2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑎 ‘ 𝑡 ) = ( 𝑎 ‘ 𝑧 ) ) |
132 |
|
fveq2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑧 ) ) |
133 |
131 132
|
breq12d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ↔ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
134 |
130 133
|
anbi12d |
⊢ ( 𝑡 = 𝑧 → ( ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ) |
135 |
134
|
rspcev |
⊢ ( ( 𝑧 ∈ On ∧ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
136 |
104 117 129 135
|
syl12anc |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
137 |
136
|
a1d |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
138 |
137
|
3exp |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ∈ 𝑤 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
139 |
2
|
orderseqlem |
⊢ ( 𝑎 ∈ 𝐹 → ( 𝑎 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
140 |
139
|
ad2antrr |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑎 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
141 |
2
|
orderseqlem |
⊢ ( 𝑏 ∈ 𝐹 → ( 𝑏 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
142 |
141
|
ad2antlr |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑏 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
143 |
2
|
orderseqlem |
⊢ ( 𝑐 ∈ 𝐹 → ( 𝑐 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
144 |
143
|
ad2antll |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑐 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
145 |
140 142 144
|
3jca |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( 𝑎 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑐 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
146 |
|
potr |
⊢ ( ( 𝑅 Po ( 𝐴 ∪ { ∅ } ) ∧ ( ( 𝑎 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑐 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) ) → ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
147 |
1 145 146
|
sylancr |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
148 |
147
|
impcom |
⊢ ( ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ∧ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) |
149 |
113 148
|
anim12i |
⊢ ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ∧ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) ) → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
150 |
149
|
anassrs |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ∧ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
151 |
150 135
|
sylan2 |
⊢ ( ( 𝑧 ∈ On ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ∧ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
152 |
151
|
exp32 |
⊢ ( 𝑧 ∈ On → ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
153 |
|
raleq |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
154 |
153
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
155 |
110 154
|
syl5bb |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
156 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑏 ‘ 𝑧 ) = ( 𝑏 ‘ 𝑤 ) ) |
157 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑐 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑤 ) ) |
158 |
156 157
|
breq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ↔ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
159 |
158
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ↔ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
160 |
155 159
|
anbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ↔ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) ) |
161 |
160
|
imbi1d |
⊢ ( 𝑧 = 𝑤 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ↔ ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
162 |
152 161
|
syl5ibcom |
⊢ ( 𝑧 ∈ On → ( 𝑧 = 𝑤 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
163 |
162
|
adantr |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 = 𝑤 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
164 |
|
simp1r |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → 𝑤 ∈ On ) |
165 |
|
onelss |
⊢ ( 𝑧 ∈ On → ( 𝑤 ∈ 𝑧 → 𝑤 ⊆ 𝑧 ) ) |
166 |
165
|
imp |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ⊆ 𝑧 ) |
167 |
166
|
adantlr |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ⊆ 𝑧 ) |
168 |
|
ssralv |
⊢ ( 𝑤 ⊆ 𝑧 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
169 |
168
|
anim1d |
⊢ ( 𝑤 ⊆ 𝑧 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
170 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
171 |
112
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
172 |
170 171
|
sylbir |
⊢ ( ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
173 |
169 172
|
syl6 |
⊢ ( 𝑤 ⊆ 𝑧 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
174 |
173
|
adantrd |
⊢ ( 𝑤 ⊆ 𝑧 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
175 |
167 174
|
syl |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ) → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
176 |
175
|
3impia |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
177 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑤 ) ) |
178 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑤 ) ) |
179 |
177 178
|
eqeq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) ) ) |
180 |
179
|
rspcv |
⊢ ( 𝑤 ∈ 𝑧 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) ) ) |
181 |
|
breq1 |
⊢ ( ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) → ( ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ↔ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
182 |
181
|
biimprd |
⊢ ( ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) → ( ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
183 |
180 182
|
syl6 |
⊢ ( 𝑤 ∈ 𝑧 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
184 |
183
|
com3l |
⊢ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) → ( 𝑤 ∈ 𝑧 → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
185 |
184
|
imp |
⊢ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) → ( 𝑤 ∈ 𝑧 → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
186 |
185
|
ad2ant2rl |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( 𝑤 ∈ 𝑧 → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
187 |
186
|
impcom |
⊢ ( ( 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) |
188 |
187
|
3adant1 |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) |
189 |
|
raleq |
⊢ ( 𝑡 = 𝑤 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
190 |
|
fveq2 |
⊢ ( 𝑡 = 𝑤 → ( 𝑎 ‘ 𝑡 ) = ( 𝑎 ‘ 𝑤 ) ) |
191 |
|
fveq2 |
⊢ ( 𝑡 = 𝑤 → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑤 ) ) |
192 |
190 191
|
breq12d |
⊢ ( 𝑡 = 𝑤 → ( ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ↔ ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
193 |
189 192
|
anbi12d |
⊢ ( 𝑡 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
194 |
193
|
rspcev |
⊢ ( ( 𝑤 ∈ On ∧ ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
195 |
164 176 188 194
|
syl12anc |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
196 |
195
|
a1d |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
197 |
196
|
3exp |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑤 ∈ 𝑧 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
198 |
138 163 197
|
3jaod |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
199 |
103 198
|
mpd |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
200 |
199
|
rexlimivv |
⊢ ( ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
201 |
99 200
|
sylbir |
⊢ ( ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
202 |
201
|
impcom |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ∧ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
203 |
94 95 202
|
jca31 |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ∧ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
204 |
203
|
an4s |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ∧ ( ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
205 |
64 93 204
|
syl2anb |
⊢ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
206 |
|
raleq |
⊢ ( 𝑥 = 𝑡 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
207 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑡 ) ) |
208 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) |
209 |
207 208
|
breq12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) |
210 |
206 209
|
anbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) |
211 |
210
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) |
212 |
21
|
ralbidv |
⊢ ( 𝑓 = 𝑎 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
213 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑡 ) = ( 𝑎 ‘ 𝑡 ) ) |
214 |
213
|
breq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ↔ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) |
215 |
212 214
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) |
216 |
215
|
rexbidv |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ↔ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) |
217 |
211 216
|
syl5bb |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) |
218 |
19 217
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
219 |
83
|
anbi2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) |
220 |
85
|
eqeq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
221 |
220
|
ralbidv |
⊢ ( 𝑔 = 𝑐 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
222 |
|
fveq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
223 |
222
|
breq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ↔ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
224 |
221 223
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
225 |
224
|
rexbidv |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ↔ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
226 |
219 225
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
227 |
17 65 218 226 3
|
brab |
⊢ ( 𝑎 𝑆 𝑐 ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
228 |
205 227
|
sylibr |
⊢ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) |
229 |
39 228
|
pm3.2i |
⊢ ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) |
230 |
229
|
a1i |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) → ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) ) |
231 |
230
|
rgen3 |
⊢ ∀ 𝑎 ∈ 𝐹 ∀ 𝑏 ∈ 𝐹 ∀ 𝑐 ∈ 𝐹 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) |
232 |
|
df-po |
⊢ ( 𝑆 Po 𝐹 ↔ ∀ 𝑎 ∈ 𝐹 ∀ 𝑏 ∈ 𝐹 ∀ 𝑐 ∈ 𝐹 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) ) |
233 |
231 232
|
mpbir |
⊢ 𝑆 Po 𝐹 |