| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poseq.1 |
⊢ 𝑅 Po ( 𝐴 ∪ { ∅ } ) |
| 2 |
|
poseq.2 |
⊢ 𝐹 = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 } |
| 3 |
|
poseq.3 |
⊢ 𝑆 = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) } |
| 4 |
|
feq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝑓 : 𝑥 ⟶ 𝐴 ↔ 𝑓 : 𝑏 ⟶ 𝐴 ) ) |
| 5 |
4
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 ↔ ∃ 𝑏 ∈ On 𝑓 : 𝑏 ⟶ 𝐴 ) |
| 6 |
5
|
abbii |
⊢ { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ 𝐴 } = { 𝑓 ∣ ∃ 𝑏 ∈ On 𝑓 : 𝑏 ⟶ 𝐴 } |
| 7 |
2 6
|
eqtri |
⊢ 𝐹 = { 𝑓 ∣ ∃ 𝑏 ∈ On 𝑓 : 𝑏 ⟶ 𝐴 } |
| 8 |
7
|
orderseqlem |
⊢ ( 𝑎 ∈ 𝐹 → ( 𝑎 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 9 |
|
poirr |
⊢ ( ( 𝑅 Po ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑎 ‘ 𝑥 ) ∈ ( 𝐴 ∪ { ∅ } ) ) → ¬ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) |
| 10 |
1 8 9
|
sylancr |
⊢ ( 𝑎 ∈ 𝐹 → ¬ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) |
| 11 |
10
|
intnand |
⊢ ( 𝑎 ∈ 𝐹 → ¬ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑥 ∈ On ) → ¬ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
| 13 |
12
|
nrexdv |
⊢ ( 𝑎 ∈ 𝐹 → ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
| 15 |
|
imnan |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ↔ ¬ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 16 |
14 15
|
mpbi |
⊢ ¬ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
| 17 |
|
vex |
⊢ 𝑎 ∈ V |
| 18 |
|
eleq1w |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ∈ 𝐹 ↔ 𝑎 ∈ 𝐹 ) ) |
| 19 |
18
|
anbi1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ) ) |
| 20 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 22 |
21
|
ralbidv |
⊢ ( 𝑓 = 𝑎 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 23 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ) |
| 24 |
23
|
breq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) |
| 25 |
22 24
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 26 |
25
|
rexbidv |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 27 |
19 26
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 28 |
|
eleq1w |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ∈ 𝐹 ↔ 𝑎 ∈ 𝐹 ) ) |
| 29 |
28
|
anbi2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ) ) |
| 30 |
|
fveq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) |
| 31 |
30
|
eqeq2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) ) |
| 32 |
31
|
ralbidv |
⊢ ( 𝑔 = 𝑎 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) ) |
| 33 |
|
fveq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ) |
| 34 |
33
|
breq2d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) |
| 35 |
32 34
|
anbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 36 |
35
|
rexbidv |
⊢ ( 𝑔 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 37 |
29 36
|
anbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
| 38 |
17 17 27 37 3
|
brab |
⊢ ( 𝑎 𝑆 𝑎 ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 39 |
16 38
|
mtbir |
⊢ ¬ 𝑎 𝑆 𝑎 |
| 40 |
|
vex |
⊢ 𝑏 ∈ V |
| 41 |
|
raleq |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑧 ) ) |
| 44 |
42 43
|
breq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) |
| 45 |
41 44
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 46 |
45
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) |
| 47 |
21
|
ralbidv |
⊢ ( 𝑓 = 𝑎 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 48 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑧 ) = ( 𝑎 ‘ 𝑧 ) ) |
| 49 |
48
|
breq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) |
| 50 |
47 49
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 51 |
50
|
rexbidv |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 52 |
46 51
|
bitrid |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 53 |
19 52
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ) ) |
| 54 |
|
eleq1w |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ∈ 𝐹 ↔ 𝑏 ∈ 𝐹 ) ) |
| 55 |
54
|
anbi2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ) ) |
| 56 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 57 |
56
|
eqeq2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 58 |
57
|
ralbidv |
⊢ ( 𝑔 = 𝑏 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 59 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑧 ) = ( 𝑏 ‘ 𝑧 ) ) |
| 60 |
59
|
breq2d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) |
| 61 |
58 60
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ) |
| 62 |
61
|
rexbidv |
⊢ ( 𝑔 = 𝑏 → ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ) |
| 63 |
55 62
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑔 ‘ 𝑧 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ) ) |
| 64 |
17 40 53 63 3
|
brab |
⊢ ( 𝑎 𝑆 𝑏 ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ) |
| 65 |
|
vex |
⊢ 𝑐 ∈ V |
| 66 |
|
eleq1w |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ∈ 𝐹 ↔ 𝑏 ∈ 𝐹 ) ) |
| 67 |
66
|
anbi1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ) ) |
| 68 |
|
raleq |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑤 ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑤 ) ) |
| 71 |
69 70
|
breq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) |
| 72 |
68 71
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) |
| 73 |
72
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) |
| 74 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 75 |
74
|
eqeq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 76 |
75
|
ralbidv |
⊢ ( 𝑓 = 𝑏 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 77 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) ) |
| 78 |
77
|
breq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ↔ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) |
| 79 |
76 78
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) |
| 80 |
79
|
rexbidv |
⊢ ( 𝑓 = 𝑏 → ( ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ↔ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) |
| 81 |
73 80
|
bitrid |
⊢ ( 𝑓 = 𝑏 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) |
| 82 |
67 81
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ) ) |
| 83 |
|
eleq1w |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ∈ 𝐹 ↔ 𝑐 ∈ 𝐹 ) ) |
| 84 |
83
|
anbi2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) |
| 85 |
|
fveq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 86 |
85
|
eqeq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 87 |
86
|
ralbidv |
⊢ ( 𝑔 = 𝑐 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 88 |
|
fveq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) |
| 89 |
88
|
breq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ↔ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
| 90 |
87 89
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 91 |
90
|
rexbidv |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ↔ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 92 |
84 91
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ( 𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑔 ‘ 𝑤 ) ) ) ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) ) |
| 93 |
40 65 82 92 3
|
brab |
⊢ ( 𝑏 𝑆 𝑐 ↔ ( ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 94 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ∧ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → 𝑎 ∈ 𝐹 ) |
| 95 |
|
simplrr |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ∧ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → 𝑐 ∈ 𝐹 ) |
| 96 |
|
an4 |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ↔ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 97 |
96
|
2rexbii |
⊢ ( ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 98 |
|
reeanv |
⊢ ( ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 99 |
97 98
|
bitri |
⊢ ( ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 100 |
|
eloni |
⊢ ( 𝑧 ∈ On → Ord 𝑧 ) |
| 101 |
|
eloni |
⊢ ( 𝑤 ∈ On → Ord 𝑤 ) |
| 102 |
|
ordtri3or |
⊢ ( ( Ord 𝑧 ∧ Ord 𝑤 ) → ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) |
| 103 |
100 101 102
|
syl2an |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) |
| 104 |
|
simp1l |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → 𝑧 ∈ On ) |
| 105 |
|
onelss |
⊢ ( 𝑤 ∈ On → ( 𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤 ) ) |
| 106 |
105
|
imp |
⊢ ( ( 𝑤 ∈ On ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ⊆ 𝑤 ) |
| 107 |
106
|
adantll |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ⊆ 𝑤 ) |
| 108 |
|
ssralv |
⊢ ( 𝑧 ⊆ 𝑤 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 109 |
108
|
anim2d |
⊢ ( 𝑧 ⊆ 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 110 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 111 |
109 110
|
imbitrrdi |
⊢ ( 𝑧 ⊆ 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 112 |
|
eqtr |
⊢ ( ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 113 |
112
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 114 |
111 113
|
syl6 |
⊢ ( 𝑧 ⊆ 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 115 |
107 114
|
syl |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ) → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 116 |
115
|
adantrd |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ) → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 117 |
116
|
3impia |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 118 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑧 ) ) |
| 119 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑐 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑧 ) ) |
| 120 |
118 119
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) ) ) |
| 121 |
120
|
rspcv |
⊢ ( 𝑧 ∈ 𝑤 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) → ( 𝑏 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) ) ) |
| 122 |
|
breq2 |
⊢ ( ( 𝑏 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ↔ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 123 |
122
|
biimpd |
⊢ ( ( 𝑏 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 124 |
121 123
|
syl6 |
⊢ ( 𝑧 ∈ 𝑤 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ) |
| 125 |
124
|
com3l |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) → ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) → ( 𝑧 ∈ 𝑤 → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ) |
| 126 |
125
|
imp |
⊢ ( ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) → ( 𝑧 ∈ 𝑤 → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 127 |
126
|
ad2ant2lr |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( 𝑧 ∈ 𝑤 → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 128 |
127
|
impcom |
⊢ ( ( 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) |
| 129 |
128
|
3adant1 |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) |
| 130 |
|
raleq |
⊢ ( 𝑡 = 𝑧 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 131 |
|
fveq2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑎 ‘ 𝑡 ) = ( 𝑎 ‘ 𝑧 ) ) |
| 132 |
|
fveq2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑧 ) ) |
| 133 |
131 132
|
breq12d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ↔ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 134 |
130 133
|
anbi12d |
⊢ ( 𝑡 = 𝑧 → ( ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ) |
| 135 |
134
|
rspcev |
⊢ ( ( 𝑧 ∈ On ∧ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
| 136 |
104 117 129 135
|
syl12anc |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
| 137 |
136
|
a1d |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑧 ∈ 𝑤 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 138 |
137
|
3exp |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ∈ 𝑤 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
| 139 |
2
|
orderseqlem |
⊢ ( 𝑎 ∈ 𝐹 → ( 𝑎 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 140 |
139
|
ad2antrr |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑎 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 141 |
2
|
orderseqlem |
⊢ ( 𝑏 ∈ 𝐹 → ( 𝑏 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 142 |
141
|
ad2antlr |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑏 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 143 |
2
|
orderseqlem |
⊢ ( 𝑐 ∈ 𝐹 → ( 𝑐 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 144 |
143
|
ad2antll |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑐 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 145 |
140 142 144
|
3jca |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( 𝑎 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑐 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 146 |
|
potr |
⊢ ( ( 𝑅 Po ( 𝐴 ∪ { ∅ } ) ∧ ( ( 𝑎 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ∧ ( 𝑐 ‘ 𝑧 ) ∈ ( 𝐴 ∪ { ∅ } ) ) ) → ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 147 |
1 145 146
|
sylancr |
⊢ ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 148 |
147
|
impcom |
⊢ ( ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ∧ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) → ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) |
| 149 |
113 148
|
anim12i |
⊢ ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ∧ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) ) → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 150 |
149
|
anassrs |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ∧ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) |
| 151 |
150 135
|
sylan2 |
⊢ ( ( 𝑧 ∈ On ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ∧ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
| 152 |
151
|
exp32 |
⊢ ( 𝑧 ∈ On → ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
| 153 |
|
raleq |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 154 |
153
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 155 |
110 154
|
bitrid |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 156 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑏 ‘ 𝑧 ) = ( 𝑏 ‘ 𝑤 ) ) |
| 157 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑐 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑤 ) ) |
| 158 |
156 157
|
breq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ↔ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
| 159 |
158
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ↔ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 160 |
155 159
|
anbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) ↔ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) ) |
| 161 |
160
|
imbi1d |
⊢ ( 𝑧 = 𝑤 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑧 ) 𝑅 ( 𝑐 ‘ 𝑧 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ↔ ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
| 162 |
152 161
|
syl5ibcom |
⊢ ( 𝑧 ∈ On → ( 𝑧 = 𝑤 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
| 163 |
162
|
adantr |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 = 𝑤 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
| 164 |
|
simp1r |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → 𝑤 ∈ On ) |
| 165 |
|
onelss |
⊢ ( 𝑧 ∈ On → ( 𝑤 ∈ 𝑧 → 𝑤 ⊆ 𝑧 ) ) |
| 166 |
165
|
imp |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ⊆ 𝑧 ) |
| 167 |
166
|
adantlr |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ⊆ 𝑧 ) |
| 168 |
|
ssralv |
⊢ ( 𝑤 ⊆ 𝑧 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 169 |
168
|
anim1d |
⊢ ( 𝑤 ⊆ 𝑧 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 170 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 171 |
112
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 172 |
170 171
|
sylbir |
⊢ ( ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 173 |
169 172
|
syl6 |
⊢ ( 𝑤 ⊆ 𝑧 → ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 174 |
173
|
adantrd |
⊢ ( 𝑤 ⊆ 𝑧 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 175 |
167 174
|
syl |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ) → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 176 |
175
|
3impia |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 177 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑤 ) ) |
| 178 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑤 ) ) |
| 179 |
177 178
|
eqeq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) ) ) |
| 180 |
179
|
rspcv |
⊢ ( 𝑤 ∈ 𝑧 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) ) ) |
| 181 |
|
breq1 |
⊢ ( ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) → ( ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ↔ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
| 182 |
181
|
biimprd |
⊢ ( ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) → ( ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
| 183 |
180 182
|
syl6 |
⊢ ( 𝑤 ∈ 𝑧 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 184 |
183
|
com3l |
⊢ ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) → ( ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) → ( 𝑤 ∈ 𝑧 → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 185 |
184
|
imp |
⊢ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) → ( 𝑤 ∈ 𝑧 → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
| 186 |
185
|
ad2ant2rl |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( 𝑤 ∈ 𝑧 → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
| 187 |
186
|
impcom |
⊢ ( ( 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) |
| 188 |
187
|
3adant1 |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) |
| 189 |
|
raleq |
⊢ ( 𝑡 = 𝑤 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 190 |
|
fveq2 |
⊢ ( 𝑡 = 𝑤 → ( 𝑎 ‘ 𝑡 ) = ( 𝑎 ‘ 𝑤 ) ) |
| 191 |
|
fveq2 |
⊢ ( 𝑡 = 𝑤 → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑤 ) ) |
| 192 |
190 191
|
breq12d |
⊢ ( 𝑡 = 𝑤 → ( ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ↔ ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) |
| 193 |
189 192
|
anbi12d |
⊢ ( 𝑡 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ↔ ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 194 |
193
|
rspcev |
⊢ ( ( 𝑤 ∈ On ∧ ( ∀ 𝑦 ∈ 𝑤 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
| 195 |
164 176 188 194
|
syl12anc |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
| 196 |
195
|
a1d |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) ∧ 𝑤 ∈ 𝑧 ∧ ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 197 |
196
|
3exp |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑤 ∈ 𝑧 → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
| 198 |
138 163 197
|
3jaod |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) ) |
| 199 |
103 198
|
mpd |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
| 200 |
199
|
rexlimivv |
⊢ ( ∃ 𝑧 ∈ On ∃ 𝑤 ∈ On ( ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ∧ ( ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 201 |
99 200
|
sylbir |
⊢ ( ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 202 |
201
|
impcom |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ∧ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
| 203 |
94 95 202
|
jca31 |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ∧ ( ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 204 |
203
|
an4s |
⊢ ( ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) ∧ ∃ 𝑧 ∈ On ( ∀ 𝑦 ∈ 𝑧 ( 𝑎 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑧 ) 𝑅 ( 𝑏 ‘ 𝑧 ) ) ) ∧ ( ( 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑤 ∈ On ( ∀ 𝑦 ∈ 𝑤 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑏 ‘ 𝑤 ) 𝑅 ( 𝑐 ‘ 𝑤 ) ) ) ) → ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 205 |
64 93 204
|
syl2anb |
⊢ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 206 |
|
raleq |
⊢ ( 𝑥 = 𝑡 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 207 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑡 ) ) |
| 208 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) |
| 209 |
207 208
|
breq12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) |
| 210 |
206 209
|
anbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 211 |
210
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) |
| 212 |
21
|
ralbidv |
⊢ ( 𝑓 = 𝑎 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) ) |
| 213 |
|
fveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ‘ 𝑡 ) = ( 𝑎 ‘ 𝑡 ) ) |
| 214 |
213
|
breq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ↔ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) |
| 215 |
212 214
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 216 |
215
|
rexbidv |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ↔ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 217 |
211 216
|
bitrid |
⊢ ( 𝑓 = 𝑎 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ↔ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 218 |
19 217
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 219 |
83
|
anbi2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ↔ ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) ) |
| 220 |
85
|
eqeq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 221 |
220
|
ralbidv |
⊢ ( 𝑔 = 𝑐 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 222 |
|
fveq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
| 223 |
222
|
breq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ↔ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) |
| 224 |
221 223
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 225 |
224
|
rexbidv |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ↔ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 226 |
219 225
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ( 𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑔 ‘ 𝑡 ) ) ) ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
| 227 |
17 65 218 226 3
|
brab |
⊢ ( 𝑎 𝑆 𝑐 ↔ ( ( 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ∧ ∃ 𝑡 ∈ On ( ∀ 𝑦 ∈ 𝑡 ( 𝑎 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ∧ ( 𝑎 ‘ 𝑡 ) 𝑅 ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 228 |
205 227
|
sylibr |
⊢ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) |
| 229 |
39 228
|
pm3.2i |
⊢ ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) |
| 230 |
229
|
a1i |
⊢ ( ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) → ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) ) |
| 231 |
230
|
rgen3 |
⊢ ∀ 𝑎 ∈ 𝐹 ∀ 𝑏 ∈ 𝐹 ∀ 𝑐 ∈ 𝐹 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) |
| 232 |
|
df-po |
⊢ ( 𝑆 Po 𝐹 ↔ ∀ 𝑎 ∈ 𝐹 ∀ 𝑏 ∈ 𝐹 ∀ 𝑐 ∈ 𝐹 ( ¬ 𝑎 𝑆 𝑎 ∧ ( ( 𝑎 𝑆 𝑏 ∧ 𝑏 𝑆 𝑐 ) → 𝑎 𝑆 𝑐 ) ) ) |
| 233 |
231 232
|
mpbir |
⊢ 𝑆 Po 𝐹 |