Step |
Hyp |
Ref |
Expression |
1 |
|
rpgt0 |
|- ( A e. RR+ -> 0 < A ) |
2 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
3 |
2
|
adantl |
|- ( ( A e. RR+ /\ n e. NN ) -> n e. ZZ ) |
4 |
|
rpxr |
|- ( A e. RR+ -> A e. RR* ) |
5 |
4
|
adantr |
|- ( ( A e. RR+ /\ n e. NN ) -> A e. RR* ) |
6 |
|
xrsmulgzz |
|- ( ( n e. ZZ /\ A e. RR* ) -> ( n ( .g ` RR*s ) A ) = ( n *e A ) ) |
7 |
3 5 6
|
syl2anc |
|- ( ( A e. RR+ /\ n e. NN ) -> ( n ( .g ` RR*s ) A ) = ( n *e A ) ) |
8 |
3
|
zred |
|- ( ( A e. RR+ /\ n e. NN ) -> n e. RR ) |
9 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
10 |
9
|
adantr |
|- ( ( A e. RR+ /\ n e. NN ) -> A e. RR ) |
11 |
|
rexmul |
|- ( ( n e. RR /\ A e. RR ) -> ( n *e A ) = ( n x. A ) ) |
12 |
|
remulcl |
|- ( ( n e. RR /\ A e. RR ) -> ( n x. A ) e. RR ) |
13 |
11 12
|
eqeltrd |
|- ( ( n e. RR /\ A e. RR ) -> ( n *e A ) e. RR ) |
14 |
8 10 13
|
syl2anc |
|- ( ( A e. RR+ /\ n e. NN ) -> ( n *e A ) e. RR ) |
15 |
7 14
|
eqeltrd |
|- ( ( A e. RR+ /\ n e. NN ) -> ( n ( .g ` RR*s ) A ) e. RR ) |
16 |
|
ltpnf |
|- ( ( n ( .g ` RR*s ) A ) e. RR -> ( n ( .g ` RR*s ) A ) < +oo ) |
17 |
15 16
|
syl |
|- ( ( A e. RR+ /\ n e. NN ) -> ( n ( .g ` RR*s ) A ) < +oo ) |
18 |
17
|
ralrimiva |
|- ( A e. RR+ -> A. n e. NN ( n ( .g ` RR*s ) A ) < +oo ) |
19 |
|
xrsex |
|- RR*s e. _V |
20 |
|
pnfxr |
|- +oo e. RR* |
21 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
22 |
|
xrs0 |
|- 0 = ( 0g ` RR*s ) |
23 |
|
eqid |
|- ( .g ` RR*s ) = ( .g ` RR*s ) |
24 |
|
xrslt |
|- < = ( lt ` RR*s ) |
25 |
21 22 23 24
|
isinftm |
|- ( ( RR*s e. _V /\ A e. RR* /\ +oo e. RR* ) -> ( A ( <<< ` RR*s ) +oo <-> ( 0 < A /\ A. n e. NN ( n ( .g ` RR*s ) A ) < +oo ) ) ) |
26 |
19 20 25
|
mp3an13 |
|- ( A e. RR* -> ( A ( <<< ` RR*s ) +oo <-> ( 0 < A /\ A. n e. NN ( n ( .g ` RR*s ) A ) < +oo ) ) ) |
27 |
4 26
|
syl |
|- ( A e. RR+ -> ( A ( <<< ` RR*s ) +oo <-> ( 0 < A /\ A. n e. NN ( n ( .g ` RR*s ) A ) < +oo ) ) ) |
28 |
1 18 27
|
mpbir2and |
|- ( A e. RR+ -> A ( <<< ` RR*s ) +oo ) |