Step |
Hyp |
Ref |
Expression |
1 |
|
rpgt0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) |
2 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
4 |
|
rpxr |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ* ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ* ) |
6 |
|
xrsmulgzz |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℝ* ) → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) = ( 𝑛 ·e 𝐴 ) ) |
7 |
3 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) = ( 𝑛 ·e 𝐴 ) ) |
8 |
3
|
zred |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
9 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
11 |
|
rexmul |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑛 ·e 𝐴 ) = ( 𝑛 · 𝐴 ) ) |
12 |
|
remulcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑛 · 𝐴 ) ∈ ℝ ) |
13 |
11 12
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑛 ·e 𝐴 ) ∈ ℝ ) |
14 |
8 10 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ·e 𝐴 ) ∈ ℝ ) |
15 |
7 14
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) ∈ ℝ ) |
16 |
|
ltpnf |
⊢ ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) ∈ ℝ → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) < +∞ ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) < +∞ ) |
18 |
17
|
ralrimiva |
⊢ ( 𝐴 ∈ ℝ+ → ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) < +∞ ) |
19 |
|
xrsex |
⊢ ℝ*𝑠 ∈ V |
20 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
21 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
22 |
|
xrs0 |
⊢ 0 = ( 0g ‘ ℝ*𝑠 ) |
23 |
|
eqid |
⊢ ( .g ‘ ℝ*𝑠 ) = ( .g ‘ ℝ*𝑠 ) |
24 |
|
xrslt |
⊢ < = ( lt ‘ ℝ*𝑠 ) |
25 |
21 22 23 24
|
isinftm |
⊢ ( ( ℝ*𝑠 ∈ V ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ( ⋘ ‘ ℝ*𝑠 ) +∞ ↔ ( 0 < 𝐴 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) < +∞ ) ) ) |
26 |
19 20 25
|
mp3an13 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ( ⋘ ‘ ℝ*𝑠 ) +∞ ↔ ( 0 < 𝐴 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) < +∞ ) ) ) |
27 |
4 26
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ( ⋘ ‘ ℝ*𝑠 ) +∞ ↔ ( 0 < 𝐴 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐴 ) < +∞ ) ) ) |
28 |
1 18 27
|
mpbir2and |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ( ⋘ ‘ ℝ*𝑠 ) +∞ ) |