| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 3 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 4 |
|
pnfinf |
⊢ ( 1 ∈ ℝ+ → 1 ( ⋘ ‘ ℝ*𝑠 ) +∞ ) |
| 5 |
3 4
|
ax-mp |
⊢ 1 ( ⋘ ‘ ℝ*𝑠 ) +∞ |
| 6 |
|
breq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ 1 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) ) |
| 7 |
|
breq2 |
⊢ ( 𝑦 = +∞ → ( 1 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ 1 ( ⋘ ‘ ℝ*𝑠 ) +∞ ) ) |
| 8 |
6 7
|
rspc2ev |
⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1 ( ⋘ ‘ ℝ*𝑠 ) +∞ ) → ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) |
| 9 |
1 2 5 8
|
mp3an |
⊢ ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 |
| 10 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℝ* ¬ ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ ¬ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) |
| 11 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ ¬ ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) |
| 12 |
11
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ ∃ 𝑥 ∈ ℝ* ¬ ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) |
| 13 |
|
xrsex |
⊢ ℝ*𝑠 ∈ V |
| 14 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 15 |
|
xrs0 |
⊢ 0 = ( 0g ‘ ℝ*𝑠 ) |
| 16 |
|
eqid |
⊢ ( ⋘ ‘ ℝ*𝑠 ) = ( ⋘ ‘ ℝ*𝑠 ) |
| 17 |
14 15 16
|
isarchi |
⊢ ( ℝ*𝑠 ∈ V → ( ℝ*𝑠 ∈ Archi ↔ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) ) |
| 18 |
13 17
|
ax-mp |
⊢ ( ℝ*𝑠 ∈ Archi ↔ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) |
| 19 |
18
|
notbii |
⊢ ( ¬ ℝ*𝑠 ∈ Archi ↔ ¬ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) |
| 20 |
10 12 19
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ ¬ ℝ*𝑠 ∈ Archi ) |
| 21 |
9 20
|
mpbi |
⊢ ¬ ℝ*𝑠 ∈ Archi |