| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 2 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 3 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 4 |  | pnfinf | ⊢ ( 1  ∈  ℝ+  →  1 ( ⋘ ‘ ℝ*𝑠 ) +∞ ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ 1 ( ⋘ ‘ ℝ*𝑠 ) +∞ | 
						
							| 6 |  | breq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦  ↔  1 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑦  =  +∞  →  ( 1 ( ⋘ ‘ ℝ*𝑠 ) 𝑦  ↔  1 ( ⋘ ‘ ℝ*𝑠 ) +∞ ) ) | 
						
							| 8 | 6 7 | rspc2ev | ⊢ ( ( 1  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  1 ( ⋘ ‘ ℝ*𝑠 ) +∞ )  →  ∃ 𝑥  ∈  ℝ* ∃ 𝑦  ∈  ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) | 
						
							| 9 | 1 2 5 8 | mp3an | ⊢ ∃ 𝑥  ∈  ℝ* ∃ 𝑦  ∈  ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 | 
						
							| 10 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  ℝ* ¬  ∀ 𝑦  ∈  ℝ* ¬  𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦  ↔  ¬  ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ¬  𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) | 
						
							| 11 |  | dfrex2 | ⊢ ( ∃ 𝑦  ∈  ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦  ↔  ¬  ∀ 𝑦  ∈  ℝ* ¬  𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) | 
						
							| 12 | 11 | rexbii | ⊢ ( ∃ 𝑥  ∈  ℝ* ∃ 𝑦  ∈  ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦  ↔  ∃ 𝑥  ∈  ℝ* ¬  ∀ 𝑦  ∈  ℝ* ¬  𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) | 
						
							| 13 |  | xrsex | ⊢ ℝ*𝑠  ∈  V | 
						
							| 14 |  | xrsbas | ⊢ ℝ*  =  ( Base ‘ ℝ*𝑠 ) | 
						
							| 15 |  | xrs0 | ⊢ 0  =  ( 0g ‘ ℝ*𝑠 ) | 
						
							| 16 |  | eqid | ⊢ ( ⋘ ‘ ℝ*𝑠 )  =  ( ⋘ ‘ ℝ*𝑠 ) | 
						
							| 17 | 14 15 16 | isarchi | ⊢ ( ℝ*𝑠  ∈  V  →  ( ℝ*𝑠  ∈  Archi  ↔  ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ¬  𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) ) | 
						
							| 18 | 13 17 | ax-mp | ⊢ ( ℝ*𝑠  ∈  Archi  ↔  ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ¬  𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) | 
						
							| 19 | 18 | notbii | ⊢ ( ¬  ℝ*𝑠  ∈  Archi  ↔  ¬  ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ¬  𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) | 
						
							| 20 | 10 12 19 | 3bitr4i | ⊢ ( ∃ 𝑥  ∈  ℝ* ∃ 𝑦  ∈  ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦  ↔  ¬  ℝ*𝑠  ∈  Archi ) | 
						
							| 21 | 9 20 | mpbi | ⊢ ¬  ℝ*𝑠  ∈  Archi |