Metamath Proof Explorer


Theorem xrnarchi

Description: The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018)

Ref Expression
Assertion xrnarchi ¬ ℝ*𝑠 ∈ Archi

Proof

Step Hyp Ref Expression
1 1xr 1 ∈ ℝ*
2 pnfxr +∞ ∈ ℝ*
3 1rp 1 ∈ ℝ+
4 pnfinf ( 1 ∈ ℝ+ → 1 ( ⋘ ‘ ℝ*𝑠 ) +∞ )
5 3 4 ax-mp 1 ( ⋘ ‘ ℝ*𝑠 ) +∞
6 breq1 ( 𝑥 = 1 → ( 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ 1 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) )
7 breq2 ( 𝑦 = +∞ → ( 1 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ 1 ( ⋘ ‘ ℝ*𝑠 ) +∞ ) )
8 6 7 rspc2ev ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1 ( ⋘ ‘ ℝ*𝑠 ) +∞ ) → ∃ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 )
9 1 2 5 8 mp3an 𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦
10 rexnal ( ∃ 𝑥 ∈ ℝ* ¬ ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ ¬ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 )
11 dfrex2 ( ∃ 𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ ¬ ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 )
12 11 rexbii ( ∃ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ ∃ 𝑥 ∈ ℝ* ¬ ∀ 𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 )
13 xrsex *𝑠 ∈ V
14 xrsbas * = ( Base ‘ ℝ*𝑠 )
15 xrs0 0 = ( 0g ‘ ℝ*𝑠 )
16 eqid ( ⋘ ‘ ℝ*𝑠 ) = ( ⋘ ‘ ℝ*𝑠 )
17 14 15 16 isarchi ( ℝ*𝑠 ∈ V → ( ℝ*𝑠 ∈ Archi ↔ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ) )
18 13 17 ax-mp ( ℝ*𝑠 ∈ Archi ↔ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 )
19 18 notbii ( ¬ ℝ*𝑠 ∈ Archi ↔ ¬ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ¬ 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 )
20 10 12 19 3bitr4i ( ∃ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑥 ( ⋘ ‘ ℝ*𝑠 ) 𝑦 ↔ ¬ ℝ*𝑠 ∈ Archi )
21 9 20 mpbi ¬ ℝ*𝑠 ∈ Archi