Step |
Hyp |
Ref |
Expression |
1 |
|
1xr |
|- 1 e. RR* |
2 |
|
pnfxr |
|- +oo e. RR* |
3 |
|
1rp |
|- 1 e. RR+ |
4 |
|
pnfinf |
|- ( 1 e. RR+ -> 1 ( <<< ` RR*s ) +oo ) |
5 |
3 4
|
ax-mp |
|- 1 ( <<< ` RR*s ) +oo |
6 |
|
breq1 |
|- ( x = 1 -> ( x ( <<< ` RR*s ) y <-> 1 ( <<< ` RR*s ) y ) ) |
7 |
|
breq2 |
|- ( y = +oo -> ( 1 ( <<< ` RR*s ) y <-> 1 ( <<< ` RR*s ) +oo ) ) |
8 |
6 7
|
rspc2ev |
|- ( ( 1 e. RR* /\ +oo e. RR* /\ 1 ( <<< ` RR*s ) +oo ) -> E. x e. RR* E. y e. RR* x ( <<< ` RR*s ) y ) |
9 |
1 2 5 8
|
mp3an |
|- E. x e. RR* E. y e. RR* x ( <<< ` RR*s ) y |
10 |
|
rexnal |
|- ( E. x e. RR* -. A. y e. RR* -. x ( <<< ` RR*s ) y <-> -. A. x e. RR* A. y e. RR* -. x ( <<< ` RR*s ) y ) |
11 |
|
dfrex2 |
|- ( E. y e. RR* x ( <<< ` RR*s ) y <-> -. A. y e. RR* -. x ( <<< ` RR*s ) y ) |
12 |
11
|
rexbii |
|- ( E. x e. RR* E. y e. RR* x ( <<< ` RR*s ) y <-> E. x e. RR* -. A. y e. RR* -. x ( <<< ` RR*s ) y ) |
13 |
|
xrsex |
|- RR*s e. _V |
14 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
15 |
|
xrs0 |
|- 0 = ( 0g ` RR*s ) |
16 |
|
eqid |
|- ( <<< ` RR*s ) = ( <<< ` RR*s ) |
17 |
14 15 16
|
isarchi |
|- ( RR*s e. _V -> ( RR*s e. Archi <-> A. x e. RR* A. y e. RR* -. x ( <<< ` RR*s ) y ) ) |
18 |
13 17
|
ax-mp |
|- ( RR*s e. Archi <-> A. x e. RR* A. y e. RR* -. x ( <<< ` RR*s ) y ) |
19 |
18
|
notbii |
|- ( -. RR*s e. Archi <-> -. A. x e. RR* A. y e. RR* -. x ( <<< ` RR*s ) y ) |
20 |
10 12 19
|
3bitr4i |
|- ( E. x e. RR* E. y e. RR* x ( <<< ` RR*s ) y <-> -. RR*s e. Archi ) |
21 |
9 20
|
mpbi |
|- -. RR*s e. Archi |