| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ·e 𝐵 ) = ( 0 ·e 𝐵 ) ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 0 ·e 𝐵 ) ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ·e 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ·e 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑛 = - 𝑚 → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑛 = - 𝑚 → ( 𝑛 ·e 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑛 = - 𝑚 → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 ·e 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑛 = 𝐴 → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) ) |
| 16 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 17 |
|
xrs0 |
⊢ 0 = ( 0g ‘ ℝ*𝑠 ) |
| 18 |
|
eqid |
⊢ ( .g ‘ ℝ*𝑠 ) = ( .g ‘ ℝ*𝑠 ) |
| 19 |
16 17 18
|
mulg0 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 0 ) |
| 20 |
|
xmul02 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ·e 𝐵 ) = 0 ) |
| 21 |
19 20
|
eqtr4d |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 0 ·e 𝐵 ) ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 𝐵 ) ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
| 25 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
| 26 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
| 27 |
16 18 26
|
mulgnnp1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
| 28 |
24 25 27
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
| 29 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = 0 ) → 𝑚 = 0 ) |
| 30 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = 0 ) → 𝐵 ∈ ℝ* ) |
| 31 |
|
xaddlid |
⊢ ( 𝐵 ∈ ℝ* → ( 0 +𝑒 𝐵 ) = 𝐵 ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 0 +𝑒 𝐵 ) = 𝐵 ) |
| 33 |
|
simpl |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → 𝑚 = 0 ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 35 |
19
|
adantl |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 0 ) |
| 36 |
34 35
|
eqtrd |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 0 ) |
| 37 |
36
|
oveq1d |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) = ( 0 +𝑒 𝐵 ) ) |
| 38 |
33
|
oveq1d |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 + 1 ) = ( 0 + 1 ) ) |
| 39 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 40 |
38 39
|
eqtrdi |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 + 1 ) = 1 ) |
| 41 |
40
|
oveq1d |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 1 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 42 |
16 18
|
mulg1 |
⊢ ( 𝐵 ∈ ℝ* → ( 1 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 𝐵 ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 1 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 𝐵 ) |
| 44 |
41 43
|
eqtrd |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 𝐵 ) |
| 45 |
32 37 44
|
3eqtr4rd |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
| 46 |
29 30 45
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = 0 ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
| 47 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
| 48 |
|
elnn0 |
⊢ ( 𝑚 ∈ ℕ0 ↔ ( 𝑚 ∈ ℕ ∨ 𝑚 = 0 ) ) |
| 49 |
47 48
|
sylib |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 ∈ ℕ ∨ 𝑚 = 0 ) ) |
| 50 |
28 46 49
|
mpjaodan |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
| 52 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 53 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 54 |
52 53
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
| 55 |
47
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 𝑚 ∈ ℕ0 ) |
| 56 |
54 55
|
sselid |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 𝑚 ∈ ℝ* ) |
| 57 |
|
nn0ge0 |
⊢ ( 𝑚 ∈ ℕ0 → 0 ≤ 𝑚 ) |
| 58 |
57
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 0 ≤ 𝑚 ) |
| 59 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 60 |
59
|
a1i |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 1 ∈ ℝ* ) |
| 61 |
|
0le1 |
⊢ 0 ≤ 1 |
| 62 |
61
|
a1i |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 0 ≤ 1 ) |
| 63 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 64 |
|
xadddi2r |
⊢ ( ( ( 𝑚 ∈ ℝ* ∧ 0 ≤ 𝑚 ) ∧ ( 1 ∈ ℝ* ∧ 0 ≤ 1 ) ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 +𝑒 1 ) ·e 𝐵 ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 ( 1 ·e 𝐵 ) ) ) |
| 65 |
56 58 60 62 63 64
|
syl221anc |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 +𝑒 1 ) ·e 𝐵 ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 ( 1 ·e 𝐵 ) ) ) |
| 66 |
52 55
|
sselid |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 𝑚 ∈ ℝ ) |
| 67 |
|
1re |
⊢ 1 ∈ ℝ |
| 68 |
67
|
a1i |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 1 ∈ ℝ ) |
| 69 |
|
rexadd |
⊢ ( ( 𝑚 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑚 +𝑒 1 ) = ( 𝑚 + 1 ) ) |
| 70 |
66 68 69
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( 𝑚 +𝑒 1 ) = ( 𝑚 + 1 ) ) |
| 71 |
70
|
oveq1d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 +𝑒 1 ) ·e 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) |
| 72 |
|
xmullid |
⊢ ( 𝐵 ∈ ℝ* → ( 1 ·e 𝐵 ) = 𝐵 ) |
| 73 |
63 72
|
syl |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( 1 ·e 𝐵 ) = 𝐵 ) |
| 74 |
73
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 ·e 𝐵 ) +𝑒 ( 1 ·e 𝐵 ) ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 𝐵 ) ) |
| 75 |
65 71 74
|
3eqtr3d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 + 1 ) ·e 𝐵 ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 𝐵 ) ) |
| 76 |
23 51 75
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) |
| 77 |
76
|
exp31 |
⊢ ( 𝐵 ∈ ℝ* → ( 𝑚 ∈ ℕ0 → ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) ) ) |
| 78 |
|
xnegeq |
⊢ ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) → -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
| 79 |
78
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
| 80 |
|
eqid |
⊢ ( invg ‘ ℝ*𝑠 ) = ( invg ‘ ℝ*𝑠 ) |
| 81 |
16 18 80
|
mulgnegnn |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ* ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( invg ‘ ℝ*𝑠 ) ‘ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) ) |
| 82 |
81
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( invg ‘ ℝ*𝑠 ) ‘ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) ) |
| 83 |
|
xrsex |
⊢ ℝ*𝑠 ∈ V |
| 84 |
83
|
a1i |
⊢ ( 𝑚 ∈ ℕ → ℝ*𝑠 ∈ V ) |
| 85 |
|
ssidd |
⊢ ( 𝑚 ∈ ℕ → ℝ* ⊆ ℝ* ) |
| 86 |
|
simp2 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑥 ∈ ℝ* ) |
| 87 |
|
simp3 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑦 ∈ ℝ* ) |
| 88 |
86 87
|
xaddcld |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 +𝑒 𝑦 ) ∈ ℝ* ) |
| 89 |
16 18 26 84 85 88
|
mulgnnsubcl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ∈ ℝ* ) |
| 90 |
89
|
3anidm12 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ∈ ℝ* ) |
| 91 |
90
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ∈ ℝ* ) |
| 92 |
|
xrsinvgval |
⊢ ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ∈ ℝ* → ( ( invg ‘ ℝ*𝑠 ) ‘ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) = -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 93 |
91 92
|
syl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( ( invg ‘ ℝ*𝑠 ) ‘ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) = -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 94 |
82 93
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
| 96 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
| 97 |
96
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ ) |
| 98 |
|
rexneg |
⊢ ( 𝑚 ∈ ℝ → -𝑒 𝑚 = - 𝑚 ) |
| 99 |
97 98
|
syl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → -𝑒 𝑚 = - 𝑚 ) |
| 100 |
99
|
oveq1d |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( -𝑒 𝑚 ·e 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) |
| 101 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 102 |
101 53
|
sstri |
⊢ ℕ ⊆ ℝ* |
| 103 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
| 104 |
102 103
|
sselid |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ* ) |
| 105 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
| 106 |
|
xmulneg1 |
⊢ ( ( 𝑚 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝑚 ·e 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
| 107 |
104 105 106
|
syl2anc |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( -𝑒 𝑚 ·e 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
| 108 |
100 107
|
eqtr3d |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( - 𝑚 ·e 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
| 109 |
108
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( - 𝑚 ·e 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
| 110 |
79 95 109
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) |
| 111 |
110
|
exp31 |
⊢ ( 𝐵 ∈ ℝ* → ( 𝑚 ∈ ℕ → ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) ) ) |
| 112 |
3 6 9 12 15 21 77 111
|
zindd |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐴 ∈ ℤ → ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) ) |
| 113 |
112
|
impcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |