Metamath Proof Explorer


Theorem pnfinf

Description: Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018)

Ref Expression
Assertion pnfinf A + A 𝑠 * +∞

Proof

Step Hyp Ref Expression
1 rpgt0 A + 0 < A
2 nnz n n
3 2 adantl A + n n
4 rpxr A + A *
5 4 adantr A + n A *
6 xrsmulgzz n A * n 𝑠 * A = n 𝑒 A
7 3 5 6 syl2anc A + n n 𝑠 * A = n 𝑒 A
8 3 zred A + n n
9 rpre A + A
10 9 adantr A + n A
11 rexmul n A n 𝑒 A = n A
12 remulcl n A n A
13 11 12 eqeltrd n A n 𝑒 A
14 8 10 13 syl2anc A + n n 𝑒 A
15 7 14 eqeltrd A + n n 𝑠 * A
16 ltpnf n 𝑠 * A n 𝑠 * A < +∞
17 15 16 syl A + n n 𝑠 * A < +∞
18 17 ralrimiva A + n n 𝑠 * A < +∞
19 xrsex 𝑠 * V
20 pnfxr +∞ *
21 xrsbas * = Base 𝑠 *
22 xrs0 0 = 0 𝑠 *
23 eqid 𝑠 * = 𝑠 *
24 xrslt < = < 𝑠 *
25 21 22 23 24 isinftm 𝑠 * V A * +∞ * A 𝑠 * +∞ 0 < A n n 𝑠 * A < +∞
26 19 20 25 mp3an13 A * A 𝑠 * +∞ 0 < A n n 𝑠 * A < +∞
27 4 26 syl A + A 𝑠 * +∞ 0 < A n n 𝑠 * A < +∞
28 1 18 27 mpbir2and A + A 𝑠 * +∞